Chan-Y's picture
Update app.py
241247a verified
raw
history blame
3.42 kB
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import PyPDF2
import gradio as gr
from langchain.prompts import PromptTemplate
from langchain.chains.summarize import load_summarize_chain
from langchain_core.documents import Document
from pathlib import Path
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
llm = HuggingFaceEndpoint(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
task="text-generation",
max_new_tokens=4096,
temperature=0.5,
do_sample=False,
)
llm_engine_hf = ChatHuggingFace(llm=llm)
def read_pdf(file_path):
pdf_reader = PyPDF2.PdfReader(file_path)
text = ""
for page in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page].extract_text()
return text
def summarize(file, n_words):
# Read the content of the uploaded file
file_path = file.name
if file_path.endswith('.pdf'):
text = read_pdf(file_path)
else:
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
template = '''
You are a commentator. Your task is to write a report on an essay.
When presented with the essay, come up with interesting questions to ask, and answer each question.
Afterward, combine all the information and write a report in the markdown format.
# Essay:
{TEXT}
# Instructions:
## Summarize:
In clear and concise language, summarize the key points and themes presented in the essay.
## Interesting Questions:
Generate three distinct and thought-provoking questions that can be asked about the content of the essay. For each question:
- After "Q: ", describe the problem
- After "A: ", provide a detailed explanation of the problem addressed in the question.
- Enclose the ultimate answer in <>.
## Write a report
Using the essay summary and the answers to the interesting questions, create a comprehensive report in Markdown format.
'''
prompt = PromptTemplate(
template=template,
input_variables=['TEXT']
)
summary = ""
while len(summary.split()) < 100:
formatted_prompt = prompt.format(TEXT=text)
output_summary = llm_engine_hf.invoke(formatted_prompt)
summary = output_summary.content
return summary
def download_summary(output_text):
if output_text:
file_path = Path('summary.txt')
with open(file_path, 'w', encoding='utf-8') as f:
f.write(output_text)
return file_path
else:
return None
def create_download_file(summary_text):
file_path = download_summary(summary_text)
return str(file_path) if file_path else None
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Document Summarizer")
with gr.Row():
with gr.Column():
file = gr.File(label="Submit a file")
with gr.Column():
output_text = gr.Textbox(label="Summary", lines=20)
submit_button = gr.Button("Summarize")
submit_button.click(summarize, inputs=[file], outputs=output_text)
def generate_file():
summary_text = output_text
file_path = download_summary(summary_text)
return file_path
download_button = gr.Button("Download Summary")
download_button.click(
fn=create_download_file,
inputs=[output_text],
outputs=gr.File()
)
# Run the Gradio app
demo.launch(share=True)