File size: 3,332 Bytes
f1691d8
 
 
c97532f
0dd7ae7
162dd8b
 
f1691d8
b975282
bf3ac4c
dc3c24e
0dd7ae7
f1691d8
d100ccb
a1758a8
8639815
f6a07f3
f1691d8
 
 
162dd8b
026783f
28f0884
 
c97532f
28f0884
c97532f
 
 
 
28f0884
 
c97532f
28f0884
a84c0e0
28f0884
a84c0e0
 
 
 
162dd8b
b975282
162dd8b
 
026783f
241247a
026783f
a84c0e0
dc3c24e
 
 
 
 
026783f
dc3c24e
b975282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dcae0c
b975282
162dd8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8639815
162dd8b
 
b9c9dac
162dd8b
f1691d8
 
 
 
 
162dd8b
 
 
 
 
 
 
f1691d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

import fitz
import gradio as gr
from langchain.prompts import PromptTemplate
from pathlib import Path
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_core.output_parsers import JsonOutputParser
from langdetect import detect
CONTEXT_WINDOW = 31_750

llm = HuggingFaceEndpoint(
    repo_id="mistralai/Mistral-7B-Instruct-v0.3",
    task="text-generation",
    max_new_tokens=4096,
    temperature=0.5,
    do_sample=False,
)
llm_engine_hf = ChatHuggingFace(llm=llm)

def read_pdf(file_path):
    print("It is a PDF file")
    try:
        pdf_document = fitz.open(file_path)
        text = ""
        for page_num in range(len(pdf_document)):
            page = pdf_document[page_num]
            text += page.get_text()
        
        return text
    except Exception as e:
        print("Error reading file,", e)
        
def read_txt(file_path):
    print("It is not a PDF file")
    with open(file_path, "r", encoding="utf-8") as f:
        text = f.read()
    return text

def summarize(file, n_words):
    global llm
    # Read the content of the uploaded file
    file_path = file.name
    if file_path.endswith('.pdf'):
        text = read_pdf(file_path)
    else:
        text = read_txt(file_path)

    print("Length of text is ", len(text))
    if len(text) > CONTEXT_WINDOW:
        print(f"Slicing the first {CONTEXT_WINDOW} characters")
        text = text[:CONTEXT_WINDOW]
            
    lang = detect(text[:CONTEXT_WINDOW])
    template_translate = '''
Please carefully read the following document:
<document>
{TEXT}
</document>
After reading through the document, pinpoint the key points and main ideas covered in the text. 
Organize these key points into a concise bulleted list that summarizes the essential information from the document. 
The summary should be in {LANG} language.
'''
    
    prompt_summarize = PromptTemplate(
        template=template_translate,
        input_variables=["TEXT", "LANG"]
    )
    formatted_prompt = prompt_summarize.format(TEXT=text, LANG=lang)
    summary = llm.invoke(formatted_prompt)
    
    return summary

def download_summary(output_text):
    if output_text:
        file_path = Path('summary.txt')
        with open(file_path, 'w', encoding='utf-8') as f:
            f.write(output_text)
        return file_path
    else:
        return None
def create_download_file(summary_text):
    file_path = download_summary(summary_text)
    return str(file_path) if file_path else None

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Document Summarizer")

    with gr.Row():
        with gr.Column():
            file = gr.File(label="Submit a file")
        
        with gr.Column():
            output_text = gr.Textbox(label="Summary", lines=20)

    submit_button = gr.Button("Summarize")
    submit_button.click(summarize, inputs=[file], outputs=output_text)

    def generate_file():
        summary_text = output_text
        file_path = download_summary(summary_text)
        return file_path

    download_button = gr.Button("Download Summary")
    download_button.click(
        fn=create_download_file,
        inputs=[output_text],
        outputs=gr.File()
    )
# Run the Gradio app
demo.launch(share=True)