Spaces:
Sleeping
Sleeping
import warnings | |
warnings.simplefilter(action='ignore', category=FutureWarning) | |
import PyPDF2 | |
import gradio as gr | |
from langchain.prompts import PromptTemplate | |
from langchain.chains.summarize import load_summarize_chain | |
from pathlib import Path | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint | |
llm = HuggingFaceEndpoint( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
task="text-generation", | |
max_new_tokens=4096, | |
temperature=0.5, | |
do_sample=False, | |
) | |
llm_engine_hf = ChatHuggingFace(llm=llm) | |
def read_pdf(file_path): | |
pdf_reader = PyPDF2.PdfReader(file_path) | |
text = "" | |
for page in range(len(pdf_reader.pages)): | |
text += pdf_reader.pages[page].extract_text() | |
return text | |
def summarize(file, n_words): | |
# Read the content of the uploaded file | |
file_path = file.name | |
if file_path.endswith('.pdf'): | |
text = read_pdf(file_path) | |
else: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
text = f.read() | |
template = ''' | |
You are a commentator. Your task is to write a report on an essay. | |
When presented with the essay, come up with interesting questions to ask, and answer each question. | |
Afterward, combine all the information and write a report in the markdown format. | |
# Essay: | |
{TEXT} | |
# Instructions: | |
## Summarize: | |
In clear and concise language, summarize the key points and themes presented in the essay. | |
## Interesting Questions: | |
Generate three distinct and thought-provoking questions that can be asked about the content of the essay. For each question: | |
- After "Q: ", describe the problem | |
- After "A: ", provide a detailed explanation of the problem addressed in the question. | |
- Enclose the ultimate answer in <>. | |
## Write a report | |
Using the essay summary and the answers to the interesting questions, create a comprehensive report in Markdown format. | |
''' | |
prompt = PromptTemplate( | |
template=template, | |
input_variables=['TEXT'] | |
) | |
formatted_prompt = prompt.format(TEXT=text) | |
output_summary = llm_engine_hf.invoke(formatted_prompt) | |
return output_summary.content | |
def download_summary(output_text): | |
if output_text: | |
file_path = Path('summary.txt') | |
with open(file_path, 'w', encoding='utf-8') as f: | |
f.write(output_text) | |
return file_path | |
else: | |
return None | |
def create_download_file(summary_text): | |
file_path = download_summary(summary_text) | |
return str(file_path) if file_path else None | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Document Summarizer") | |
with gr.Row(): | |
with gr.Column(): | |
file = gr.File(label="Submit a file") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Summary", lines=20) | |
submit_button = gr.Button("Summarize") | |
submit_button.click(summarize, inputs=[file], outputs=output_text) | |
def generate_file(): | |
summary_text = output_text | |
file_path = download_summary(summary_text) | |
return file_path | |
download_button = gr.Button("Download Summary") | |
download_button.click( | |
fn=create_download_file, | |
inputs=[output_text], | |
outputs=gr.File() | |
) | |
# Run the Gradio app | |
demo.launch(share=True) |