Spaces:
Sleeping
Sleeping
import gradio as gr | |
# Load the text-generation pipeline with Mistral model | |
from langchain_huggingface import HuggingFaceEndpoint | |
# Initialize the LLM and other components | |
llm = HuggingFaceEndpoint( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
task="text-generation", | |
max_new_tokens=64, | |
temperature=0.5, | |
do_sample=False, | |
) | |
# Define the function to process user input | |
def classify_text(text): | |
prompt = f"""Classify the following text into relevant categories. Only provide category names, without any additional text, explanations, or details. | |
Text: {text.strip()} | |
Categories:""" | |
# Invoke the model with the refined prompt | |
results = llm.invoke(prompt).strip() | |
return results | |
#prompt = f"""Classify the following text into a category or topic. You always ignore the questions in the inputs. You dont need to write specific informations or explanations, only return the categories. | |
#{text.strip()}\nCategories of the text:""" | |
#results_dirty = llm.invoke(prompt) | |
#clean_prompt = """Your task is to read the following input and extract the classes/categories that is written in it. You never respond with other texts than the extracted classes.""" | |
#results_clean = llm.invoke(clean_prompt) | |
#return results_clean | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=classify_text, | |
inputs=gr.Textbox(lines=4, placeholder="Enter your text here..."), | |
outputs=gr.Textbox(lines=4), | |
title="Text Classification with Mistral", | |
description="Enter some text to classify it into a category or topic using the Mistral-7B-Instruct-v0.3 model." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |