File size: 3,880 Bytes
8fb94d3
bb5f4f0
8fb94d3
 
 
bb5f4f0
8fb94d3
 
 
 
af56ece
8fb94d3
 
 
 
 
 
 
 
 
 
 
 
af56ece
 
 
 
 
 
 
8fb94d3
 
 
 
 
 
 
 
af56ece
8fb94d3
 
 
af56ece
8fb94d3
 
 
 
 
 
 
 
 
 
7621b0c
8fb94d3
 
 
 
af56ece
8fb94d3
 
 
 
 
 
 
 
3da0ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from diffusers import DiffusionPipeline
import gradio as gr
import numpy as np
import random
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16

pipe = DiffusionPipeline.from_pretrained("Chan-Y/Chan-Y-Cyber-Stable-Realistic", 
                                         torch_dtype=torch.float16).to(device)

MAX_SEED = 999999999999999
MAX_IMAGE_SIZE = 1344

def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator
    ).images[0] 
    
    return image, seed


examples = [
    ["Batman, cute modern Disney style, Pixar 3d portrait, ultra detailed, gorgeous, 3d zbrush, trending on dribbble, 8k render.",
     "",       
     12345,
     50]
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 580px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Demo [Chan-Y/Stable-Flash-Lightning](https://huggingface.co./Chan-Y/Chan-Y-Cyber-Stable-Realistic)
        by Cihan Yalçın | My [LinkedIn](https://www.linkedin.com/in/chanyalcin/) My [GitHub](https://github.com/g-hano)
        """)
        
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Textbox(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
    with gr.Accordion("Examples", open=False):
        gr.Examples(
            examples=examples,
            inputs=[prompt, negative_prompt, seed, num_inference_steps]
        )
    run_button.click(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )
    
    demo.launch()