Spaces:
Runtime error
Runtime error
quincyqiang
commited on
Commit
·
3c24b5a
1
Parent(s):
0e24559
feature@添加websearch
Browse files- README.md +4 -1
- clc/__pycache__/__init__.cpython-310.pyc +0 -0
- clc/__pycache__/gpt_service.cpython-310.pyc +0 -0
- clc/__pycache__/langchain_application.cpython-310.pyc +0 -0
- clc/__pycache__/source_service.cpython-310.pyc +0 -0
- clc/langchain_application.py +18 -7
- clc/source_service.py +14 -0
- main.py +29 -13
- requirements.txt +7 -153
- tests/test_duckduckgo_search.py +11 -5
README.md
CHANGED
@@ -2,12 +2,15 @@
|
|
2 |
|
3 |
> Chinese-LangChain:中文langchain项目,基于ChatGLM-6b+langchain实现本地化知识库检索与智能答案生成
|
4 |
|
|
|
|
|
5 |
## 🔥 效果演示
|
6 |
|
7 |
![](https://github.com/yanqiangmiffy/Chinese-LangChain/blob/master/images/web_demo.png)
|
8 |
|
9 |
## 🚀 特性
|
10 |
|
|
|
11 |
- 🚀 2023/04/18 webui增加知识库选择功能
|
12 |
- 🚀 2023/04/18 修复推理预测超时5s报错问题
|
13 |
- 🎉 2023/04/17 支持多种文档上传与内容解析:pdf、docx,ppt等
|
@@ -29,7 +32,7 @@
|
|
29 |
* [x] 支持检索结果与LLM生成结果对比
|
30 |
* [ ] 支持检索生成结果与原始LLM生成结果对比
|
31 |
* [ ] 检索结果过滤与排序
|
32 |
-
* [
|
33 |
* [ ] 模型初始化有问题
|
34 |
* [ ] 增加非LangChain策略
|
35 |
|
|
|
2 |
|
3 |
> Chinese-LangChain:中文langchain项目,基于ChatGLM-6b+langchain实现本地化知识库检索与智能答案生成
|
4 |
|
5 |
+
俗称:小必应,Q.Talk,强聊,QiangTalk
|
6 |
+
|
7 |
## 🔥 效果演示
|
8 |
|
9 |
![](https://github.com/yanqiangmiffy/Chinese-LangChain/blob/master/images/web_demo.png)
|
10 |
|
11 |
## 🚀 特性
|
12 |
|
13 |
+
- 🚀 2023/04/19 增加web search功能,需要确保网络畅通!
|
14 |
- 🚀 2023/04/18 webui增加知识库选择功能
|
15 |
- 🚀 2023/04/18 修复推理预测超时5s报错问题
|
16 |
- 🎉 2023/04/17 支持多种文档上传与内容解析:pdf、docx,ppt等
|
|
|
32 |
* [x] 支持检索结果与LLM生成结果对比
|
33 |
* [ ] 支持检索生成结果与原始LLM生成结果对比
|
34 |
* [ ] 检索结果过滤与排序
|
35 |
+
* [x] 互联网检索结果接入
|
36 |
* [ ] 模型初始化有问题
|
37 |
* [ ] 增加非LangChain策略
|
38 |
|
clc/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (310 Bytes). View file
|
|
clc/__pycache__/gpt_service.cpython-310.pyc
ADDED
Binary file (1.96 kB). View file
|
|
clc/__pycache__/langchain_application.cpython-310.pyc
ADDED
Binary file (3.21 kB). View file
|
|
clc/__pycache__/source_service.cpython-310.pyc
ADDED
Binary file (2.37 kB). View file
|
|
clc/langchain_application.py
CHANGED
@@ -37,13 +37,24 @@ class LangChainApplication(object):
|
|
37 |
history_len=5,
|
38 |
temperature=0.1,
|
39 |
top_p=0.9,
|
|
|
|
|
40 |
chat_history=[]):
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
prompt = PromptTemplate(template=prompt_template,
|
48 |
input_variables=["context", "question"])
|
49 |
self.llm_service.history = chat_history[-history_len:] if history_len > 0 else []
|
@@ -54,7 +65,7 @@ class LangChainApplication(object):
|
|
54 |
knowledge_chain = RetrievalQA.from_llm(
|
55 |
llm=self.llm_service,
|
56 |
retriever=self.source_service.vector_store.as_retriever(
|
57 |
-
search_kwargs={"k":
|
58 |
prompt=prompt)
|
59 |
knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
|
60 |
input_variables=["page_content"], template="{page_content}")
|
|
|
37 |
history_len=5,
|
38 |
temperature=0.1,
|
39 |
top_p=0.9,
|
40 |
+
top_k=4,
|
41 |
+
web_content='',
|
42 |
chat_history=[]):
|
43 |
+
if web_content:
|
44 |
+
prompt_template = f"""基于以下已知信息,简洁和专业的来回答用户的问题。
|
45 |
+
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
|
46 |
+
已知网络检索内容:{web_content}""" + """
|
47 |
+
已知内容:
|
48 |
+
{context}
|
49 |
+
问题:
|
50 |
+
{question}"""
|
51 |
+
else:
|
52 |
+
prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。
|
53 |
+
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
|
54 |
+
已知内容:
|
55 |
+
{context}
|
56 |
+
问题:
|
57 |
+
{question}"""
|
58 |
prompt = PromptTemplate(template=prompt_template,
|
59 |
input_variables=["context", "question"])
|
60 |
self.llm_service.history = chat_history[-history_len:] if history_len > 0 else []
|
|
|
65 |
knowledge_chain = RetrievalQA.from_llm(
|
66 |
llm=self.llm_service,
|
67 |
retriever=self.source_service.vector_store.as_retriever(
|
68 |
+
search_kwargs={"k": top_k}),
|
69 |
prompt=prompt)
|
70 |
knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
|
71 |
input_variables=["page_content"], template="{page_content}")
|
clc/source_service.py
CHANGED
@@ -12,6 +12,8 @@
|
|
12 |
|
13 |
import os
|
14 |
|
|
|
|
|
15 |
from langchain.document_loaders import UnstructuredFileLoader
|
16 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
17 |
from langchain.vectorstores import FAISS
|
@@ -53,6 +55,18 @@ class SourceService(object):
|
|
53 |
self.vector_store = FAISS.load_local(path, self.embeddings)
|
54 |
return self.vector_store
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# if __name__ == '__main__':
|
57 |
# config = LangChainCFG()
|
58 |
# source_service = SourceService(config)
|
|
|
12 |
|
13 |
import os
|
14 |
|
15 |
+
from duckduckgo_search import ddg
|
16 |
+
from duckduckgo_search.utils import SESSION
|
17 |
from langchain.document_loaders import UnstructuredFileLoader
|
18 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
19 |
from langchain.vectorstores import FAISS
|
|
|
55 |
self.vector_store = FAISS.load_local(path, self.embeddings)
|
56 |
return self.vector_store
|
57 |
|
58 |
+
def search_web(self, query):
|
59 |
+
|
60 |
+
SESSION.proxies = {
|
61 |
+
"http": f"socks5h://localhost:7890",
|
62 |
+
"https": f"socks5h://localhost:7890"
|
63 |
+
}
|
64 |
+
results = ddg(query)
|
65 |
+
web_content = ''
|
66 |
+
if results:
|
67 |
+
for result in results:
|
68 |
+
web_content += result['body']
|
69 |
+
return web_content
|
70 |
# if __name__ == '__main__':
|
71 |
# config = LangChainCFG()
|
72 |
# source_service = SourceService(config)
|
main.py
CHANGED
@@ -5,19 +5,19 @@ import gradio as gr
|
|
5 |
|
6 |
from clc.langchain_application import LangChainApplication
|
7 |
|
8 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = '
|
9 |
|
10 |
|
11 |
# 修改成自己的配置!!!
|
12 |
class LangChainCFG:
|
13 |
-
llm_model_name = '
|
14 |
-
embedding_model_name = '
|
15 |
vector_store_path = './cache'
|
16 |
docs_path = './docs'
|
17 |
kg_vector_stores = {
|
18 |
-
'中文维基百科': '
|
19 |
-
'大规模金融研报知识图谱': '
|
20 |
-
'初始化知识库': '
|
21 |
} # 可以替换成自己的知识库,如果没有需要设置为None
|
22 |
# kg_vector_stores=None
|
23 |
|
@@ -62,24 +62,35 @@ def clear_session():
|
|
62 |
def predict(input,
|
63 |
large_language_model,
|
64 |
embedding_model,
|
|
|
|
|
65 |
history=None):
|
66 |
# print(large_language_model, embedding_model)
|
67 |
print(input)
|
68 |
if history == None:
|
69 |
history = []
|
|
|
|
|
|
|
|
|
|
|
70 |
resp = application.get_knowledge_based_answer(
|
71 |
query=input,
|
72 |
history_len=1,
|
73 |
temperature=0.1,
|
74 |
top_p=0.9,
|
|
|
|
|
75 |
chat_history=history
|
76 |
)
|
77 |
history.append((input, resp['result']))
|
78 |
search_text = ''
|
79 |
for idx, source in enumerate(resp['source_documents'][:4]):
|
80 |
-
sep = f'----------【搜索结果{idx+1}:】---------------\n'
|
81 |
search_text += f'{sep}\n{source.page_content}\n\n'
|
82 |
print(search_text)
|
|
|
|
|
83 |
return '', history, history, search_text
|
84 |
|
85 |
|
@@ -108,20 +119,22 @@ with block as demo:
|
|
108 |
|
109 |
top_k = gr.Slider(1,
|
110 |
20,
|
111 |
-
value=
|
112 |
step=1,
|
113 |
-
label="
|
114 |
interactive=True)
|
115 |
kg_name = gr.Radio(['中文维基百科',
|
116 |
'大规模金融研报知识图谱',
|
117 |
'初始化知识库'
|
118 |
],
|
119 |
label="知识库",
|
120 |
-
value='
|
121 |
interactive=True)
|
122 |
set_kg_btn = gr.Button("重新加载知识库")
|
123 |
|
124 |
-
|
|
|
|
|
125 |
visible=True,
|
126 |
file_types=['.txt', '.md', '.docx', '.pdf']
|
127 |
)
|
@@ -149,7 +162,9 @@ with block as demo:
|
|
149 |
send.click(predict,
|
150 |
inputs=[
|
151 |
message, large_language_model,
|
152 |
-
embedding_model,
|
|
|
|
|
153 |
],
|
154 |
outputs=[message, chatbot, state, search])
|
155 |
|
@@ -163,7 +178,8 @@ with block as demo:
|
|
163 |
message.submit(predict,
|
164 |
inputs=[
|
165 |
message, large_language_model,
|
166 |
-
embedding_model,
|
|
|
167 |
],
|
168 |
outputs=[message, chatbot, state, search])
|
169 |
gr.Markdown("""提醒:<br>
|
|
|
5 |
|
6 |
from clc.langchain_application import LangChainApplication
|
7 |
|
8 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
9 |
|
10 |
|
11 |
# 修改成自己的配置!!!
|
12 |
class LangChainCFG:
|
13 |
+
llm_model_name = 'THUDM/chatglm-6b-int4-qe' # 本地模型文件 or huggingface远程仓库
|
14 |
+
embedding_model_name = 'GanymedeNil/text2vec-large-chinese' # 检索模型文件 or huggingface远程仓库
|
15 |
vector_store_path = './cache'
|
16 |
docs_path = './docs'
|
17 |
kg_vector_stores = {
|
18 |
+
'中文维基百科': './cache/zh_wikipedia',
|
19 |
+
'大规模金融研报知识图谱': '.cache/financial_research_reports',
|
20 |
+
'初始化知识库': '.cache',
|
21 |
} # 可以替换成自己的知识库,如果没有需要设置为None
|
22 |
# kg_vector_stores=None
|
23 |
|
|
|
62 |
def predict(input,
|
63 |
large_language_model,
|
64 |
embedding_model,
|
65 |
+
top_k,
|
66 |
+
use_web,
|
67 |
history=None):
|
68 |
# print(large_language_model, embedding_model)
|
69 |
print(input)
|
70 |
if history == None:
|
71 |
history = []
|
72 |
+
|
73 |
+
if use_web == '使用':
|
74 |
+
web_content = application.source_service.search_web(query=input)
|
75 |
+
else:
|
76 |
+
web_content = ''
|
77 |
resp = application.get_knowledge_based_answer(
|
78 |
query=input,
|
79 |
history_len=1,
|
80 |
temperature=0.1,
|
81 |
top_p=0.9,
|
82 |
+
top_k=top_k,
|
83 |
+
web_content=web_content,
|
84 |
chat_history=history
|
85 |
)
|
86 |
history.append((input, resp['result']))
|
87 |
search_text = ''
|
88 |
for idx, source in enumerate(resp['source_documents'][:4]):
|
89 |
+
sep = f'----------【搜索结果{idx + 1}:】---------------\n'
|
90 |
search_text += f'{sep}\n{source.page_content}\n\n'
|
91 |
print(search_text)
|
92 |
+
search_text += "----------【网络检索内容】-----------\n"
|
93 |
+
search_text += web_content
|
94 |
return '', history, history, search_text
|
95 |
|
96 |
|
|
|
119 |
|
120 |
top_k = gr.Slider(1,
|
121 |
20,
|
122 |
+
value=4,
|
123 |
step=1,
|
124 |
+
label="检索top-k文档",
|
125 |
interactive=True)
|
126 |
kg_name = gr.Radio(['中文维基百科',
|
127 |
'大规模金融研报知识图谱',
|
128 |
'初始化知识库'
|
129 |
],
|
130 |
label="知识库",
|
131 |
+
value='初始化知识库',
|
132 |
interactive=True)
|
133 |
set_kg_btn = gr.Button("重新加载知识库")
|
134 |
|
135 |
+
use_web = gr.Radio(["使用", "不使用"], label="web search", info="是否使用网络搜索,使用时确保网络通常")
|
136 |
+
|
137 |
+
file = gr.File(label="将文件上传到知识库库,内容要尽量匹配",
|
138 |
visible=True,
|
139 |
file_types=['.txt', '.md', '.docx', '.pdf']
|
140 |
)
|
|
|
162 |
send.click(predict,
|
163 |
inputs=[
|
164 |
message, large_language_model,
|
165 |
+
embedding_model, top_k, use_web,
|
166 |
+
|
167 |
+
state
|
168 |
],
|
169 |
outputs=[message, chatbot, state, search])
|
170 |
|
|
|
178 |
message.submit(predict,
|
179 |
inputs=[
|
180 |
message, large_language_model,
|
181 |
+
embedding_model, top_k, use_web,
|
182 |
+
state
|
183 |
],
|
184 |
outputs=[message, chatbot, state, search])
|
185 |
gr.Markdown("""提醒:<br>
|
requirements.txt
CHANGED
@@ -1,153 +1,7 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
async-timeout==4.0.2
|
9 |
-
attrs==23.1.0
|
10 |
-
backoff==2.2.1
|
11 |
-
beautifulsoup4==4.12.2
|
12 |
-
brotlipy==0.7.0
|
13 |
-
cachetools==5.3.0
|
14 |
-
cchardet==2.1.7
|
15 |
-
certifi
|
16 |
-
cffi
|
17 |
-
chardet==5.1.0
|
18 |
-
charset-normalizer==3.1.0
|
19 |
-
click==8.1.3
|
20 |
-
coloredlogs==15.0.1
|
21 |
-
commonmark==0.9.1
|
22 |
-
contourpy==1.0.7
|
23 |
-
cpm-kernels==1.0.11
|
24 |
-
cryptography
|
25 |
-
cycler==0.11.0
|
26 |
-
dataclasses-json==0.5.7
|
27 |
-
Deprecated==1.2.13
|
28 |
-
effdet==0.3.0
|
29 |
-
entrypoints==0.4
|
30 |
-
et-xmlfile==1.1.0
|
31 |
-
faiss-gpu==1.7.2
|
32 |
-
fastapi==0.95.1
|
33 |
-
ffmpy==0.3.0
|
34 |
-
filelock==3.11.0
|
35 |
-
flatbuffers==23.3.3
|
36 |
-
flit_core
|
37 |
-
fonttools==4.39.3
|
38 |
-
frozenlist==1.3.3
|
39 |
-
fsspec==2023.4.0
|
40 |
-
gmpy2
|
41 |
-
gptcache==0.1.14
|
42 |
-
gradio==3.27.0
|
43 |
-
gradio_client==0.1.3
|
44 |
-
greenlet==2.0.2
|
45 |
-
h11==0.14.0
|
46 |
-
httpcore==0.16.3
|
47 |
-
httpx==0.23.3
|
48 |
-
huggingface-hub==0.13.4
|
49 |
-
humanfriendly==10.0
|
50 |
-
icetk==0.0.7
|
51 |
-
idna
|
52 |
-
iopath==0.1.10
|
53 |
-
Jinja2
|
54 |
-
joblib==1.2.0
|
55 |
-
jsonschema==4.17.3
|
56 |
-
kiwisolver==1.4.4
|
57 |
-
langchain==0.0.142
|
58 |
-
layoutparser==0.3.4
|
59 |
-
linkify-it-py==2.0.0
|
60 |
-
lxml==4.9.2
|
61 |
-
Markdown==3.4.3
|
62 |
-
markdown-it-py==2.2.0
|
63 |
-
MarkupSafe==2.1.2
|
64 |
-
marshmallow==3.19.0
|
65 |
-
marshmallow-enum==1.5.1
|
66 |
-
matplotlib==3.7.1
|
67 |
-
mdit-py-plugins==0.3.3
|
68 |
-
mdurl==0.1.2
|
69 |
-
mkl-fft==1.3.1
|
70 |
-
mkl-random
|
71 |
-
mkl-service==2.4.0
|
72 |
-
monotonic==1.6
|
73 |
-
mpmath==1.2.1
|
74 |
-
msg-parser==1.2.0
|
75 |
-
multidict==6.0.4
|
76 |
-
mypy-extensions==1.0.0
|
77 |
-
networkx
|
78 |
-
nltk==3.8.1
|
79 |
-
numexpr==2.8.4
|
80 |
-
numpy
|
81 |
-
olefile==0.46
|
82 |
-
omegaconf==2.3.0
|
83 |
-
onnxruntime==1.14.1
|
84 |
-
openai==0.27.4
|
85 |
-
openapi-schema-pydantic==1.2.4
|
86 |
-
opencv-python==4.6.0.66
|
87 |
-
openpyxl==3.1.2
|
88 |
-
orjson==3.8.10
|
89 |
-
packaging==23.1
|
90 |
-
pandas==1.5.3
|
91 |
-
pdf2image==1.16.3
|
92 |
-
pdfminer.six==20221105
|
93 |
-
pdfplumber==0.9.0
|
94 |
-
Pillow==9.5.0
|
95 |
-
portalocker==2.7.0
|
96 |
-
protobuf==3.18.3
|
97 |
-
pycocotools==2.0.6
|
98 |
-
pycparser
|
99 |
-
pydantic==1.10.7
|
100 |
-
pydub==0.25.1
|
101 |
-
Pygments==2.15.0
|
102 |
-
pyOpenSSL
|
103 |
-
pypandoc==1.11
|
104 |
-
pyparsing==3.0.9
|
105 |
-
pyrsistent==0.19.3
|
106 |
-
PySocks
|
107 |
-
pytesseract==0.3.10
|
108 |
-
python-dateutil==2.8.2
|
109 |
-
python-docx==0.8.11
|
110 |
-
python-magic==0.4.27
|
111 |
-
python-multipart==0.0.6
|
112 |
-
python-pptx==0.6.21
|
113 |
-
pytz==2023.3
|
114 |
-
PyYAML==6.0
|
115 |
-
regex==2023.3.23
|
116 |
-
requests==2.28.2
|
117 |
-
rfc3986==1.5.0
|
118 |
-
rich==13.0.1
|
119 |
-
scikit-learn==1.2.2
|
120 |
-
scipy==1.10.1
|
121 |
-
semantic-version==2.10.0
|
122 |
-
sentence-transformers==2.2.2
|
123 |
-
sentencepiece==0.1.98
|
124 |
-
six
|
125 |
-
sniffio==1.3.0
|
126 |
-
soupsieve==2.4.1
|
127 |
-
SQLAlchemy==1.4.47
|
128 |
-
starlette==0.26.1
|
129 |
-
sympy
|
130 |
-
tenacity==8.2.2
|
131 |
-
threadpoolctl==3.1.0
|
132 |
-
timm==0.6.13
|
133 |
-
tokenizers==0.13.3
|
134 |
-
toolz==0.12.0
|
135 |
-
torch==2.0.0
|
136 |
-
torchaudio==2.0.0
|
137 |
-
torchvision==0.15.0
|
138 |
-
tqdm==4.65.0
|
139 |
-
transformers==4.28.1
|
140 |
-
triton==2.0.0
|
141 |
-
typing-inspect==0.8.0
|
142 |
-
typing_extensions==4.5.0
|
143 |
-
tzdata==2023.3
|
144 |
-
uc-micro-py==1.0.1
|
145 |
-
unstructured==0.5.12
|
146 |
-
unstructured-inference==0.3.2
|
147 |
-
urllib3
|
148 |
-
uvicorn==0.21.1
|
149 |
-
Wand==0.6.11
|
150 |
-
websockets==11.0.2
|
151 |
-
wrapt==1.14.1
|
152 |
-
XlsxWriter==3.1.0
|
153 |
-
yarl==1.8.2
|
|
|
1 |
+
langchain
|
2 |
+
gradio
|
3 |
+
transformers
|
4 |
+
sentence_transformers
|
5 |
+
faiss-cpu
|
6 |
+
unstructured
|
7 |
+
duckduckgo_search
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/test_duckduckgo_search.py
CHANGED
@@ -2,9 +2,15 @@ from duckduckgo_search import ddg
|
|
2 |
from duckduckgo_search.utils import SESSION
|
3 |
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
r = ddg("马保国")
|
10 |
-
print(r)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from duckduckgo_search.utils import SESSION
|
3 |
|
4 |
|
5 |
+
SESSION.proxies = {
|
6 |
+
"http": f"socks5h://localhost:7890",
|
7 |
+
"https": f"socks5h://localhost:7890"
|
8 |
+
}
|
9 |
r = ddg("马保国")
|
10 |
+
print(r[:2])
|
11 |
+
"""
|
12 |
+
[{'title': '马保国 - 维基百科,自由的百科全书', 'href': 'https://zh.wikipedia.org/wiki/%E9%A9%AC%E4%BF%9D%E5%9B%BD', 'body': '马保国(1951年 — ) ,男,籍贯 山东 临沂,出生及长大于河南,中国大陆太极拳师,自称"浑元形意太极门掌门人" 。 马保国因2017年约战mma格斗家徐晓冬首次出现
|
13 |
+
大众视野中。 2020年5月,马保国在对阵民间武术爱好者王庆民的比赛中,30秒内被连续高速击倒三次,此事件成为了持续多日的社交 ...'}, {'title': '馬保國的主页 - 抖音', 'href': 'https://www.douyin.com/user/MS4wLjABAAAAW0E1ziOvxgUh3VVv5FE6xmoo3w5WtZalfphYZKj4mCg', 'body': '6.3万. #马马国教扛打功 最近有几个人模芳我动作,很危险啊,不可以的,朋友们不要受伤了。. 5.3万. #马保国直播带货榜第一 朋友们周末愉快,本周六早上湿点,我本人在此号进行第一次带货直播,活到老,学到老,越活越年轻。. 7.0万. #马保国击破红牛罐 昨天 ...'}]
|
14 |
+
|
15 |
+
|
16 |
+
"""
|