|
import torch |
|
from torch import nn |
|
from transformers import AutoModel, AutoTokenizer |
|
import gradio as gr |
|
|
|
|
|
device = torch.device("cpu") |
|
|
|
|
|
class RaceClassifier(nn.Module): |
|
|
|
def __init__(self, n_classes): |
|
super(RaceClassifier, self).__init__() |
|
self.bert = AutoModel.from_pretrained("vinai/bertweet-base") |
|
self.drop = nn.Dropout(p=0.3) |
|
self.out = nn.Linear(self.bert.config.hidden_size, |
|
n_classes) |
|
|
|
def forward(self, input_ids, attention_mask): |
|
bert_output = self.bert( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask |
|
) |
|
last_hidden_state = bert_output[0] |
|
pooled_output = last_hidden_state[:, 0] |
|
output = self.drop(pooled_output) |
|
return self.out(output) |
|
|
|
|
|
race_labels = { |
|
0: "African American", |
|
1: "Asian", |
|
2: "Latin", |
|
3: "White" |
|
} |
|
|
|
age_labels = { |
|
0: "Adult", |
|
1: "Elderly", |
|
2: "Young" |
|
} |
|
|
|
education_labels = { |
|
0: "Educated", |
|
1: "Uneducated" |
|
} |
|
|
|
gender_labels = { |
|
0: "Female", |
|
1: "Male", |
|
2: "Non-Binary", |
|
3: "Transgender" |
|
} |
|
|
|
orientation_labels = { |
|
0: "Heterosexual", |
|
1: "LGBTQ" |
|
} |
|
|
|
model_race = RaceClassifier(n_classes=4) |
|
model_race.to(device) |
|
model_race.load_state_dict(torch.load('best_model_race_last.pt', map_location=torch.device('cpu'))) |
|
|
|
model_age = RaceClassifier(n_classes=3) |
|
model_age.to(device) |
|
model_age.load_state_dict(torch.load('best_model_age_last.pt', map_location=torch.device('cpu'))) |
|
|
|
model_education = RaceClassifier(n_classes=2) |
|
model_education.to(device) |
|
model_education.load_state_dict(torch.load('best_model_education_last.pt', map_location=torch.device('cpu'))) |
|
|
|
model_gender = RaceClassifier(n_classes=4) |
|
model_gender.to(device) |
|
model_gender.load_state_dict(torch.load('best_model_gender_last.pt', map_location=torch.device('cpu'))) |
|
|
|
model_orientation = RaceClassifier(n_classes=2) |
|
model_orientation.to(device) |
|
model_orientation.load_state_dict(torch.load('best_model_orientation_last.pt', map_location=torch.device('cpu'))) |
|
|
|
|
|
def evaluate(model, input, mask): |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(input, mask) |
|
probs = torch.nn.functional.softmax(outputs, dim=1) |
|
predictions = torch.argmax(outputs, dim=1) |
|
predictions = predictions.cpu().numpy() |
|
return probs, predictions |
|
|
|
|
|
def write_output(probs, predictions, title, labels): |
|
output_string = f"{title.upper()}\n Probabilities:\n" |
|
for i, prob in enumerate(probs[0]): |
|
print(f"{labels[i]} = {round(prob.item() * 100, 2)}%") |
|
output_string += f"{labels[i]} = {round(prob.item() * 100, 2)}%\n" |
|
|
|
output_string += f"Predicted as: {labels[predictions[0]]}\n" |
|
|
|
return output_string |
|
|
|
|
|
def predict(*text): |
|
tweets = [tweet for tweet in text if tweet] |
|
print(tweets) |
|
sentences = tweets |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", normalization=True) |
|
|
|
encoded_sentences = tokenizer( |
|
sentences, |
|
padding=True, |
|
truncation=True, |
|
return_tensors='pt', |
|
max_length=128, |
|
) |
|
|
|
input_ids = encoded_sentences["input_ids"].to(device) |
|
attention_mask = encoded_sentences["attention_mask"].to(device) |
|
|
|
race_probs, race_predictions = evaluate(model_race, input_ids, attention_mask) |
|
age_probs, age_predictions = evaluate(model_age, input_ids, attention_mask) |
|
education_probs, education_predictions = evaluate(model_education, input_ids, attention_mask) |
|
gender_probs, gender_predictions = evaluate(model_gender, input_ids, attention_mask) |
|
orientation_probs, orientation_predictions = evaluate(model_orientation, input_ids, attention_mask) |
|
|
|
final_output = str() |
|
final_output += write_output(race_probs, race_predictions, "race", race_labels) |
|
final_output += "\n" |
|
final_output += write_output(age_probs, age_predictions,"age",age_labels) |
|
final_output += "\n" |
|
final_output += write_output(education_probs,education_predictions,"education", education_labels) |
|
final_output += "\n" |
|
final_output += write_output(gender_probs, gender_predictions, "gender", gender_labels) |
|
final_output += "\n" |
|
final_output += write_output(orientation_probs, orientation_predictions, "sexual orientation", orientation_labels) |
|
|
|
return final_output |
|
|
|
|
|
max_textboxes = 20 |
|
|
|
|
|
def update_textboxes(k): |
|
components = [] |
|
if k is None: |
|
k = 0 |
|
for i in range(max_textboxes): |
|
if i < k: |
|
components.append(gr.update(visible=True)) |
|
else: |
|
components.append(gr.update(visible=False)) |
|
return components |
|
|
|
|
|
def clear_textboxes(): |
|
return [gr.update(value='') for _ in range(max_textboxes)] |
|
|
|
def clear_output_box(): |
|
return gr.update(value='') |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
s = gr.Slider(1, max_textboxes, value=1, step=1, label="How many tweets do you want to enter:") |
|
textboxes = [gr.Textbox(label=f"Tweet {i + 1}", visible=(i == 0)) for i in range(max_textboxes)] |
|
s.change(fn=update_textboxes, inputs=s, outputs=textboxes) |
|
btn = gr.Button("Predict") |
|
btn_clear = gr.Button("Clear") |
|
with gr.Column(scale=1): |
|
output = gr.Textbox(label="Profile of User") |
|
|
|
btn.click(fn=predict, inputs=textboxes, outputs=output) |
|
btn_clear.click(fn=clear_textboxes, outputs=textboxes) |
|
btn_clear.click(fn=clear_output_box, outputs=output) |
|
|
|
|
|
demo.launch() |
|
|
|
|
|
|