File size: 5,570 Bytes
bea74aa
 
 
b5ac54b
 
6e257b4
 
3019ade
 
bea74aa
3019ade
bea74aa
 
6eeb6f8
bea74aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7216ad1
bea74aa
 
 
 
 
7216ad1
f91bc10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7216ad1
 
 
 
 
bea74aa
 
ba18439
7216ad1
f91bc10
 
 
 
 
 
 
 
 
 
 
 
7216ad1
 
50239d2
7216ad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bea74aa
f7d5b05
 
 
 
bea74aa
6eeb6f8
f7d5b05
 
 
 
 
 
341055f
f7d5b05
 
 
 
 
7216ad1
f91bc10
 
 
7216ad1
f7d5b05
7216ad1
 
 
f91bc10
7216ad1
f91bc10
 
 
 
 
f7d5b05
7216ad1
f7d5b05
 
 
bea74aa
 
435431a
 
 
 
 
 
 
 
 
 
bea74aa
 
435431a
 
bea74aa
5f8a104
 
bea74aa
435431a
 
 
 
 
 
 
8225fca
435431a
 
bea74aa
435431a
 
5f8a104
 
b5ac54b
 
bea74aa
435431a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
from torch import nn
from transformers import AutoModel, AutoTokenizer
import gradio as gr


device = torch.device("cpu")


class RaceClassifier(nn.Module):

    def __init__(self, n_classes):
        super(RaceClassifier, self).__init__()
        self.bert = AutoModel.from_pretrained("vinai/bertweet-base")
        self.drop = nn.Dropout(p=0.3)  # can be changed in future
        self.out = nn.Linear(self.bert.config.hidden_size,
                             n_classes)  # linear layer for the output with the number of classes

    def forward(self, input_ids, attention_mask):
        bert_output = self.bert(
            input_ids=input_ids,
            attention_mask=attention_mask
        )
        last_hidden_state = bert_output[0]
        pooled_output = last_hidden_state[:, 0]
        output = self.drop(pooled_output)
        return self.out(output)


race_labels = {
    0: "African American",
    1: "Asian",
    2: "Latin",
    3: "White"
}

age_labels = {
    0: "Adult",
    1: "Elderly",
    2: "Young"
}

education_labels = {
    0: "Educated",
    1: "Uneducated"
}

gender_labels = {
    0: "Female",
    1: "Male",
    2: "Non-Binary",
    3: "Transgender"
}

orientation_labels = {
    0: "Heterosexual",
    1: "LGBTQ"
}

model_race = RaceClassifier(n_classes=4)
model_race.to(device)
model_race.load_state_dict(torch.load('best_model_race_last.pt', map_location=torch.device('cpu')))

model_age = RaceClassifier(n_classes=3)
model_age.to(device)
model_age.load_state_dict(torch.load('best_model_age_last.pt', map_location=torch.device('cpu')))

model_education = RaceClassifier(n_classes=2)
model_education.to(device)
model_education.load_state_dict(torch.load('best_model_education_last.pt', map_location=torch.device('cpu')))

model_gender = RaceClassifier(n_classes=4)
model_gender.to(device)
model_gender.load_state_dict(torch.load('best_model_gender_last.pt', map_location=torch.device('cpu')))

model_orientation = RaceClassifier(n_classes=2)
model_orientation.to(device)
model_orientation.load_state_dict(torch.load('best_model_orientation_last.pt', map_location=torch.device('cpu')))


def evaluate(model, input, mask):
    model.eval()
    with torch.no_grad():
        outputs = model(input, mask)
        probs = torch.nn.functional.softmax(outputs, dim=1)
        predictions = torch.argmax(outputs, dim=1)
        predictions = predictions.cpu().numpy()
    return probs, predictions


def write_output(probs, predictions, title, labels):
    output_string = f"{title.upper()}\n Probabilities:\n"
    for i, prob in enumerate(probs[0]):
        print(f"{labels[i]} = {round(prob.item() * 100, 2)}%")
        output_string += f"{labels[i]} = {round(prob.item() * 100, 2)}%\n"

    output_string += f"Predicted as: {labels[predictions[0]]}\n"

    return output_string


def predict(*text):
    tweets = [tweet for tweet in text if tweet]
    print(tweets)
    sentences = tweets

    tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", normalization=True)

    encoded_sentences = tokenizer(
        sentences,
        padding=True,
        truncation=True,
        return_tensors='pt',
        max_length=100,
    )

    input_ids = encoded_sentences["input_ids"].to(device)
    attention_mask = encoded_sentences["attention_mask"].to(device)

    race_probs, race_predictions = evaluate(model_race, input_ids, attention_mask)
    age_probs, age_predictions = evaluate(model_age, input_ids, attention_mask)
    education_probs, education_predictions = evaluate(model_education, input_ids, attention_mask)
    gender_probs, gender_predictions = evaluate(model_gender, input_ids, attention_mask)
    orientation_probs, orientation_predictions = evaluate(model_orientation, input_ids, attention_mask)

    final_output = str()
    final_output += write_output(race_probs, race_predictions, "race", race_labels)
    final_output += "\n"
    final_output += write_output(age_probs, age_predictions,"age",age_labels)
    final_output += "\n"
    final_output += write_output(education_probs,education_predictions,"education", education_labels)
    final_output += "\n"
    final_output += write_output(gender_probs, gender_predictions, "gender", gender_labels)
    final_output += "\n"
    final_output += write_output(orientation_probs, orientation_predictions, "sexual orientation", orientation_labels)

    return final_output


max_textboxes = 20


def update_textboxes(k):
    components = []
    if k is None:
        k = 0
    for i in range(max_textboxes):
        if i < k:
            components.append(gr.update(visible=True))
        else:
            components.append(gr.update(visible=False))
    return components


def clear_textboxes():
    return [gr.update(value='') for _ in range(max_textboxes)]

def clear_output_box():
    return gr.update(value='')

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            s = gr.Slider(1, max_textboxes, value=1, step=1, label="How many tweets do you want to enter:")
            textboxes = [gr.Textbox(label=f"Tweet {i + 1}", visible=(i == 0)) for i in range(max_textboxes)]
            s.change(fn=update_textboxes, inputs=s, outputs=textboxes)
            btn = gr.Button("Predict")
            btn_clear = gr.Button("Clear")
        with gr.Column(scale=1):
            output = gr.Textbox(label="Profile of User")

    btn.click(fn=predict, inputs=textboxes, outputs=output)
    btn_clear.click(fn=clear_textboxes, outputs=textboxes)
    btn_clear.click(fn=clear_output_box, outputs=output)


demo.launch()