File size: 6,442 Bytes
32faf2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import timm
from copy import deepcopy
from typing import Tuple

import numpy as np
import timm
import torch
from torch.nn import functional as F
from torchvision.transforms.functional import resize, to_pil_image  # type: ignore


class ResizeLongestSide:
    """
    Resizes images to longest side 'target_length', as well as provides
    methods for resizing coordinates and boxes. Provides methods for
    transforming both numpy array and batched torch tensors.
    """

    def __init__(self, target_length: int) -> None:
        self.target_length = target_length

    def apply_image(self, image: np.ndarray) -> np.ndarray:
        """
        Expects a numpy array with shape HxWxC in uint8 format.
        """
        target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
        return np.array(resize(to_pil_image(image), target_size))

    def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
        """
        Expects a numpy array of length 2 in the final dimension. Requires the
        original image size in (H, W) format.
        """
        old_h, old_w = original_size
        new_h, new_w = self.get_preprocess_shape(
            original_size[0], original_size[1], self.target_length
        )
        coords = deepcopy(coords).astype(float)
        coords[..., 0] = coords[..., 0] * (new_w / old_w)
        coords[..., 1] = coords[..., 1] * (new_h / old_h)
        return coords

    def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
        """
        Expects a numpy array shape Bx4. Requires the original image size
        in (H, W) format.
        """
        boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
        return boxes.reshape(-1, 4)

    def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
        """
        Expects batched images with shape BxCxHxW and float format. This
        transformation may not exactly match apply_image. apply_image is
        the transformation expected by the model.
        """
        # Expects an image in BCHW format. May not exactly match apply_image.
        target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
        return F.interpolate(
            image, target_size, mode="bilinear", align_corners=False, antialias=True
        )

    def apply_coords_torch(
            self, coords: torch.Tensor, original_size: Tuple[int, ...]
    ) -> torch.Tensor:
        """
        Expects a torch tensor with length 2 in the last dimension. Requires the
        original image size in (H, W) format.
        """
        old_h, old_w = original_size
        new_h, new_w = self.get_preprocess_shape(
            original_size[0], original_size[1], self.target_length
        )
        coords = deepcopy(coords).to(torch.float)
        coords[..., 0] = coords[..., 0] * (new_w / old_w)
        coords[..., 1] = coords[..., 1] * (new_h / old_h)
        return coords

    def apply_boxes_torch(
            self, boxes: torch.Tensor, original_size: Tuple[int, ...]
    ) -> torch.Tensor:
        """
        Expects a torch tensor with shape Bx4. Requires the original image
        size in (H, W) format.
        """
        boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
        return boxes.reshape(-1, 4)

    @staticmethod
    def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
        """
        Compute the output size given input size and target long side length.
        """
        scale = long_side_length * 1.0 / max(oldh, oldw)
        newh, neww = oldh * scale, oldw * scale
        neww = int(neww + 0.5)
        newh = int(newh + 0.5)
        return (newh, neww)


class ModelINet(torch.nn.Module):
    # hrnet_w32, wide_resnet50_2
    def __init__(self, device, backbone_name='wide_resnet50_2', out_indices=(1, 2, 3), checkpoint_path='',
                 pool_last=False):
        super().__init__()
        # Determine if to output features.
        kwargs = {'features_only': True if out_indices else False}
        if out_indices:
            kwargs.update({'out_indices': out_indices})
        print(backbone_name)

        self.device = device
        self.backbone = timm.create_model(model_name=backbone_name, pretrained=True, checkpoint_path=checkpoint_path,
                                          **kwargs)
        self.backbone.eval()
        self.backbone = self.backbone.to(self.device)

        self.avg_pool = torch.nn.AdaptiveAvgPool2d((1, 1)) if pool_last else None

        self.pixel_mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).view(-1, 1, 1).to(self.device)
        self.pixel_std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).view(-1, 1, 1).to(self.device)

        self.img_size = 1024
        self.transform_size = ResizeLongestSide(self.img_size)

    def set_img_size(self, img_size):
        self.img_size = img_size
        self.transform_size = ResizeLongestSide(self.img_size)

    def preprocess(self, image: np.ndarray):
        """Normalize pixel values and pad to a square input."""

        input_image = self.transform_size.apply_image(image)
        input_image_torch = torch.as_tensor(input_image, device=self.device)
        x = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]

        # Normalize colors
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]
        padh = self.img_size - h
        padw = self.img_size - w
        x = F.pad(x, (0, padw, 0, padh))

        ratio_h = h / self.img_size
        ratio_w = w / self.img_size
        return x, ratio_h, ratio_w

    @torch.no_grad()
    def forward(self, x):
        x, ratio_h, ratio_w = self.preprocess(x)
        x = x.to(self.device)

        # Backbone forward pass.
        features = self.backbone(x)

        # Adaptive average pool over the last layer.
        if self.avg_pool:
            fmap = features[-1]
            fmap = self.avg_pool(fmap)
            fmap = torch.flatten(fmap, 1)
            features.append(fmap)

        size_0 = features[0].shape[2:]

        for i in range(1, len(features)):
            features[i] = F.interpolate(features[i], size_0)

        features = torch.cat(features, dim=1)
        features = F.normalize(features, dim=1)

        return features, ratio_h, ratio_w