Spaces:
Sleeping
Sleeping
File size: 6,443 Bytes
ea290b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# **How to use HugChat - the unofficial Hugging Chat API**"
],
"metadata": {
"id": "R4FiZs77vKXr"
}
},
{
"cell_type": "markdown",
"source": [
"## **Install prerequisite libraries**"
],
"metadata": {
"id": "6jmfeB1PvL8_"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "g9bTbqH96XS2",
"outputId": "452331b1-e565-4228-f241-9e80cfb956f6"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting hugchat==0.1.0\n",
" Downloading hugchat-0.1.0-py3-none-any.whl (24 kB)\n",
"Collecting python-dotenv\n",
" Downloading python_dotenv-1.0.0-py3-none-any.whl (19 kB)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from hugchat==0.1.0) (2.27.1)\n",
"Collecting requests-toolbelt (from hugchat==0.1.0)\n",
" Downloading requests_toolbelt-1.0.0-py2.py3-none-any.whl (54 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m54.5/54.5 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->hugchat==0.1.0) (1.26.16)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->hugchat==0.1.0) (2023.7.22)\n",
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->hugchat==0.1.0) (2.0.12)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->hugchat==0.1.0) (3.4)\n",
"Installing collected packages: python-dotenv, requests-toolbelt, hugchat\n",
"Successfully installed hugchat-0.1.0 python-dotenv-1.0.0 requests-toolbelt-1.0.0\n"
]
}
],
"source": [
"! pip install hugchat==0.1.0 python-dotenv"
]
},
{
"cell_type": "markdown",
"source": [
"## **Load Hugging Face credentials**"
],
"metadata": {
"id": "tXioNOYMv1ti"
}
},
{
"cell_type": "code",
"source": [
"from dotenv import dotenv_values\n",
"\n",
"secrets = dotenv_values('hf.env')"
],
"metadata": {
"id": "tdJjllXGueGX"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"hf_email = secrets['EMAIL']\n",
"hf_pass = secrets['PASS']"
],
"metadata": {
"id": "tNHBfLF788f2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## **LLM response generation**"
],
"metadata": {
"id": "_yc18ezBzML6"
}
},
{
"cell_type": "code",
"source": [
"from hugchat import hugchat\n",
"from hugchat.login import Login"
],
"metadata": {
"id": "H21niuMc8xcv"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Function for generating LLM response\n",
"def generate_response(prompt_input, email, passwd):\n",
" # Hugging Face Login\n",
" sign = Login(email, passwd)\n",
" cookies = sign.login()\n",
" # Create ChatBot\n",
" chatbot = hugchat.ChatBot(cookies=cookies.get_dict())\n",
" return chatbot.chat(prompt_input)"
],
"metadata": {
"id": "4k9iUzyWzwSh"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"prompt = \"What is Streamlit?\"\n",
"response = generate_response(prompt, hf_email, hf_pass)"
],
"metadata": {
"id": "TD0YIqY1zQmK"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"response"
],
"metadata": {
"id": "2Om92sQ4z3e2",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 125
},
"outputId": "89e9b29a-3a54-4e61-dd13-b75395fa82b6"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'Streamlit is a lightweight Python library for creating interactive data analysis tools such as visualizations and reports. It makes use of modern web technologies like React, Redux, and WebSockets to provide fast, responsive UI components that can be used to build custom user interfaces. At its core, Streamlit provides a set of high-level abstractions built on top of NumPy and Pandas that make it easy to create beautiful charts, tables, maps, and other types of output. It works seamlessly with popular libraries like Altair, Bokeh, Matplotlib, and Seaborn, allowing you to combine their unique strengths into powerful analytical tools. Overall, Streamlit simplifies the process of building data science applications by providing a unified interface that integrates development environments with deployment tools, making it possible to iterate quickly and easily share results.'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 11
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "aIWbxGM-1LDh"
},
"execution_count": null,
"outputs": []
}
]
} |