import os from typing import List, Tuple from flask import Flask, request, jsonify from google.cloud import vertex_ai # Ensure to install the Google Cloud SDK (vertex-ai) # Initialize Flask app app = Flask(__name__) # Set the Google Cloud project ID and location (Make sure to replace with your own) project_id = os.getenv("GOOGLE_CLOUD_PROJECT_ID") # Make sure to set this in your environment location = os.getenv("GOOGLE_CLOUD_LOCATION", "us-central1") # Default location if not set # Initialize Vertex AI client vertex_ai_client = vertex_ai.PredictionServiceClient(client_options={"api_endpoint": f"{location}-aiplatform.googleapis.com"}) # Define the endpoint for your model deployment endpoint = "projects/{project_id}/locations/{location}/endpoints/{endpoint_id}" # Replace with your actual endpoint ID # Define a system message (if necessary) SYSTEM_MESSAGE = "You are a helpful assistant." # Function to generate AI response using Google Gemini (Vertex AI) def generate_response( user_input: str, history: List[Tuple[str, str]], max_tokens: int = 150, temperature: float = 0.7, top_p: float = 1.0 ) -> str: """ Generates a response using the Google Gemini (Vertex AI) API. Args: user_input: The user's input message. history: A list of tuples containing the conversation history (user input, AI response). max_tokens: The maximum number of tokens in the generated response. temperature: Controls the randomness of the generated response. top_p: Controls the nucleus sampling probability. Returns: str: The generated response from the AI model. """ try: # Prepare the history and current input for the model conversation = [{"role": "system", "content": SYSTEM_MESSAGE}] for user_message, assistant_message in history: conversation.append({"role": "user", "content": user_message}) conversation.append({"role": "assistant", "content": assistant_message}) # Add the current user input conversation.append({"role": "user", "content": user_input}) # Prepare the payload for the request to Vertex AI instances = [{"content": conversation}] parameters = { "temperature": temperature, "max_output_tokens": max_tokens, "top_p": top_p, } # Send the request to the Vertex AI API response = vertex_ai_client.predict(endpoint=endpoint, instances=instances, parameters=parameters) # Extract the response from the API output ai_response = response.predictions[0].get('content', 'Sorry, I couldn’t generate a response.') return ai_response except Exception as e: print(f"An error occurred: {e}") return "Error: An unexpected error occurred while processing your request." # Route to handle user input and generate responses @app.route("/chat", methods=["POST"]) def chat(): try: # Get user input from the request user_input = request.json.get("user_input", "") history = request.json.get("history", []) # Generate the AI response response = generate_response( user_input=user_input, history=history ) # Return the response as JSON return jsonify({"response": response}) except Exception as e: return jsonify({"error": str(e)}), 500 if __name__ == "__main__": # Run the app app.run(debug=True, host="0.0.0.0", port=5000)