Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from typing import List, Tuple | |
# Initialize the Inference Client with the Canstralian/redteamai model | |
client = InferenceClient("Canstralian/redteamai") | |
def respond( | |
message: str, | |
history: List[Tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
# Start with the system message in the conversation history | |
messages = [{"role": "system", "content": system_message}] | |
# Add the conversation history to the message | |
for user_message, assistant_reply in history: | |
if user_message: | |
messages.append({"role": "user", "content": user_message}) | |
if assistant_reply: | |
messages.append({"role": "assistant", "content": assistant_reply}) | |
# Add the current user message | |
messages.append({"role": "user", "content": message}) | |
# Create the API request | |
response = "" | |
for result in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True # Enable streaming for real-time responses | |
): | |
# Extract and accumulate the response as it streams | |
token = result['choices'][0]['delta']['content'] | |
response += token | |
yield response # Yield response as it's generated | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=respond, | |
inputs=[ | |
gr.Textbox(label="User Message", placeholder="Enter your message here..."), | |
gr.State(value=[], label="Chat History"), # Correct usage of State | |
gr.Textbox(value="You are a friendly chatbot.", label="System Message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"), | |
], | |
outputs=gr.Textbox(label="Assistant Response"), | |
live=True, # Enable real-time updating of the response | |
) | |
if __name__ == "__main__": | |
demo.launch() |