Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import langdetect | |
import json | |
# Initialize Hugging Face client with the new model | |
client = InferenceClient(model="OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5") | |
# Default system message to guide the assistant | |
default_system_message = ( | |
"You are NLPToolkit Agent, an advanced assistant specializing in NLP tasks such as text summarization, " | |
"sentiment analysis, text classification, and entity recognition. Adapt your responses to the selected task." | |
) | |
# Predefined task-specific instructions | |
task_instructions = { | |
"Summarization": "Summarize the text clearly and concisely.", | |
"Sentiment Analysis": "Analyze the sentiment of the text (positive, neutral, negative).", | |
"Text Classification": "Classify the text into relevant categories.", | |
"Entity Recognition": "Identify and list named entities in the text." | |
} | |
# Enhanced text preprocessing function (from pipeline) | |
def preprocess_input(text): | |
""" | |
Clean and validate the user's input text with better error handling and language detection. | |
""" | |
try: | |
# Detect input language | |
language = langdetect.detect(text) | |
if language != "en": | |
return f"Input language detected as {language}. Please provide input in English." | |
except langdetect.lang_detect_exception.LangDetectException: | |
return "Unable to detect language. Please provide valid text input." | |
except Exception as e: | |
return f"An error occurred while processing the text: {str(e)}" | |
return text.strip() | |
# Model inference function (from pipeline) | |
def run_model_inference(messages, max_tokens, temperature, top_p): | |
""" | |
Run model inference based on the messages with specified parameters. | |
""" | |
try: | |
response = "" | |
for chunk in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = chunk.choices[0].delta.content | |
response += token | |
yield response | |
except Exception as e: | |
yield f"Error generating response: {str(e)}" | |
# Output postprocessing (from pipeline) | |
def postprocess_output(response): | |
""" | |
Postprocess the model's response before presenting it to the user. | |
""" | |
# Example: Clean up the response or format it if necessary | |
return response.strip() | |
# Enhanced respond function with pipeline integration | |
def respond(task, message, history, system_message, max_tokens, temperature, top_p): | |
""" | |
Handle user messages and generate responses using the NLP model with integrated pipeline. | |
""" | |
# Apply task-specific instructions | |
system_message = f"{system_message} Task: {task_instructions.get(task, 'General NLP task')}" | |
# Preprocess the user's input using the pipeline | |
message = preprocess_input(message) | |
if message.startswith("Input language detected") or message.startswith("Unable to detect"): | |
return message # Early exit on language issues | |
# Prepare conversation history | |
messages = [{"role": "system", "content": system_message}] | |
for user_message, assistant_message in history: | |
if user_message: | |
messages.append({"role": "user", "content": user_message}) | |
if assistant_message: | |
messages.append({"role": "assistant", "content": assistant_message}) | |
messages.append({"role": "user", "content": message}) | |
# Get model response using the pipeline function (streamed) | |
response = "" | |
for chunk in run_model_inference( | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p | |
): | |
response = chunk | |
# Postprocess the model's response before sending it to the user | |
return postprocess_output(response) | |
# Improved chat history management functions with better file handling | |
def save_history(history, filename="chat_history.json"): | |
try: | |
with open(filename, "w") as f: | |
json.dump(history, f) | |
return "Chat history saved successfully." | |
except Exception as e: | |
return f"Error saving chat history: {str(e)}" | |
def load_history(filename="chat_history.json"): | |
try: | |
with open(filename, "r") as f: | |
history = json.load(f) | |
return history | |
except FileNotFoundError: | |
return [] | |
except json.JSONDecodeError: | |
return [] # Handle case where the file is empty or corrupt | |
# Refactor the Gradio interface to be more organized and responsive | |
def create_interface(): | |
""" | |
Create and enhance the Gradio interface for the chatbot with improved layout and feedback. | |
""" | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🧠 NLPToolkit Agent\nAn advanced assistant for NLP tasks, powered by Hugging Face.") | |
# Organize task selection and parameters in a better layout | |
with gr.Row(): | |
task = gr.Dropdown( | |
choices=["Summarization", "Sentiment Analysis", "Text Classification", "Entity Recognition"], | |
value="Summarization", | |
label="Select NLP Task" | |
) | |
with gr.Row(): | |
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...") | |
system_message = gr.Textbox(value=default_system_message, label="System Message") | |
with gr.Row(): | |
chat_history = gr.State(value=[]) | |
assistant_response = gr.Textbox(label="Assistant Response", interactive=False) | |
with gr.Row(): | |
max_tokens = gr.Slider(1, 2048, value=512, label="Max Tokens") | |
temperature = gr.Slider(0.1, 4.0, value=0.7, label="Temperature") | |
top_p = gr.Slider(0.1, 1.0, value=0.95, label="Top-p (Nucleus Sampling)") | |
with gr.Row(): | |
save_button = gr.Button("Save Chat History") | |
load_button = gr.Button("Load Chat History") | |
with gr.Row(): | |
submit_button = gr.Button("Generate Response") | |
# Connect button actions and ensure smooth flow | |
submit_button.click( | |
fn=respond, | |
inputs=[task, user_input, chat_history, system_message, max_tokens, temperature, top_p], | |
outputs=assistant_response | |
) | |
save_button.click(fn=save_history, inputs=chat_history, outputs=None) | |
load_button.click(fn=load_history, inputs=None, outputs=chat_history) | |
gr.Markdown("### 🚀 Powered by Hugging Face and Gradio | Developed by Canstralian") | |
return demo | |
# Run the enhanced Gradio app | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch() |