NLPToolkit / app.py
Canstralian's picture
Update app.py
9c9750b verified
import gradio as gr
from huggingface_hub import InferenceClient
import langdetect
import json
# Initialize Hugging Face client with the new model
client = InferenceClient(model="OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5")
# Default system message to guide the assistant
default_system_message = (
"You are NLPToolkit Agent, an advanced assistant specializing in NLP tasks such as text summarization, "
"sentiment analysis, text classification, and entity recognition. Adapt your responses to the selected task."
)
# Predefined task-specific instructions
task_instructions = {
"Summarization": "Summarize the text clearly and concisely.",
"Sentiment Analysis": "Analyze the sentiment of the text (positive, neutral, negative).",
"Text Classification": "Classify the text into relevant categories.",
"Entity Recognition": "Identify and list named entities in the text."
}
# Enhanced text preprocessing function (from pipeline)
def preprocess_input(text):
"""
Clean and validate the user's input text with better error handling and language detection.
"""
try:
# Detect input language
language = langdetect.detect(text)
if language != "en":
return f"Input language detected as {language}. Please provide input in English."
except langdetect.lang_detect_exception.LangDetectException:
return "Unable to detect language. Please provide valid text input."
except Exception as e:
return f"An error occurred while processing the text: {str(e)}"
return text.strip()
# Model inference function (from pipeline)
def run_model_inference(messages, max_tokens, temperature, top_p):
"""
Run model inference based on the messages with specified parameters.
"""
try:
response = ""
for chunk in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content
response += token
yield response
except Exception as e:
yield f"Error generating response: {str(e)}"
# Output postprocessing (from pipeline)
def postprocess_output(response):
"""
Postprocess the model's response before presenting it to the user.
"""
# Example: Clean up the response or format it if necessary
return response.strip()
# Enhanced respond function with pipeline integration
def respond(task, message, history, system_message, max_tokens, temperature, top_p):
"""
Handle user messages and generate responses using the NLP model with integrated pipeline.
"""
# Apply task-specific instructions
system_message = f"{system_message} Task: {task_instructions.get(task, 'General NLP task')}"
# Preprocess the user's input using the pipeline
message = preprocess_input(message)
if message.startswith("Input language detected") or message.startswith("Unable to detect"):
return message # Early exit on language issues
# Prepare conversation history
messages = [{"role": "system", "content": system_message}]
for user_message, assistant_message in history:
if user_message:
messages.append({"role": "user", "content": user_message})
if assistant_message:
messages.append({"role": "assistant", "content": assistant_message})
messages.append({"role": "user", "content": message})
# Get model response using the pipeline function (streamed)
response = ""
for chunk in run_model_inference(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p
):
response = chunk
# Postprocess the model's response before sending it to the user
return postprocess_output(response)
# Improved chat history management functions with better file handling
def save_history(history, filename="chat_history.json"):
try:
with open(filename, "w") as f:
json.dump(history, f)
return "Chat history saved successfully."
except Exception as e:
return f"Error saving chat history: {str(e)}"
def load_history(filename="chat_history.json"):
try:
with open(filename, "r") as f:
history = json.load(f)
return history
except FileNotFoundError:
return []
except json.JSONDecodeError:
return [] # Handle case where the file is empty or corrupt
# Refactor the Gradio interface to be more organized and responsive
def create_interface():
"""
Create and enhance the Gradio interface for the chatbot with improved layout and feedback.
"""
with gr.Blocks() as demo:
gr.Markdown("## 🧠 NLPToolkit Agent\nAn advanced assistant for NLP tasks, powered by Hugging Face.")
# Organize task selection and parameters in a better layout
with gr.Row():
task = gr.Dropdown(
choices=["Summarization", "Sentiment Analysis", "Text Classification", "Entity Recognition"],
value="Summarization",
label="Select NLP Task"
)
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
system_message = gr.Textbox(value=default_system_message, label="System Message")
with gr.Row():
chat_history = gr.State(value=[])
assistant_response = gr.Textbox(label="Assistant Response", interactive=False)
with gr.Row():
max_tokens = gr.Slider(1, 2048, value=512, label="Max Tokens")
temperature = gr.Slider(0.1, 4.0, value=0.7, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.95, label="Top-p (Nucleus Sampling)")
with gr.Row():
save_button = gr.Button("Save Chat History")
load_button = gr.Button("Load Chat History")
with gr.Row():
submit_button = gr.Button("Generate Response")
# Connect button actions and ensure smooth flow
submit_button.click(
fn=respond,
inputs=[task, user_input, chat_history, system_message, max_tokens, temperature, top_p],
outputs=assistant_response
)
save_button.click(fn=save_history, inputs=chat_history, outputs=None)
load_button.click(fn=load_history, inputs=None, outputs=chat_history)
gr.Markdown("### 🚀 Powered by Hugging Face and Gradio | Developed by Canstralian")
return demo
# Run the enhanced Gradio app
if __name__ == "__main__":
demo = create_interface()
demo.launch()