|
import subprocess |
|
import sys |
|
import os |
|
|
|
|
|
def install_package(package_name): |
|
subprocess.run([sys.executable, "-m", "pip", "install", package_name], check=True) |
|
|
|
|
|
try: |
|
import torch |
|
except ImportError: |
|
print("Torch n'est pas installé. Installation de torch...") |
|
install_package("torch") |
|
import torch |
|
|
|
|
|
try: |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
TextIteratorStreamer, |
|
) |
|
except ImportError: |
|
print("Transformers n'est pas installé. Installation de transformers...") |
|
install_package("transformers") |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
TextIteratorStreamer, |
|
) |
|
|
|
|
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True, |
|
) |
|
|
|
import gradio as gr |
|
from threading import Thread |
|
|
|
|
|
token = os.getenv("HF_TOKEN") |
|
if not token: |
|
raise ValueError("Le token d'authentification HF_TOKEN n'est pas défini.") |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"CampAIgn/Phi-3-mini_16bit", |
|
token=token, |
|
trust_remote_code=True, |
|
) |
|
tok = AutoTokenizer.from_pretrained("CampAIgn/Phi-3-mini_16bit", token=token) |
|
|
|
terminators = [tok.eos_token_id] |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
print(f"Using GPU: {torch.cuda.get_device_name(device)}") |
|
else: |
|
device = torch.device("cpu") |
|
print("Using CPU") |
|
|
|
model = model.to(device) |
|
|
|
|
|
def chat(message, history, temperature, do_sample, max_tokens): |
|
chat = [{"role": "user", "content": item[0]} for item in history] |
|
chat.extend({"role": "assistant", "content": item[1]} for item in history if item[1]) |
|
chat.append({"role": "user", "content": message}) |
|
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) |
|
model_inputs = tok([messages], return_tensors="pt").to(device) |
|
streamer = TextIteratorStreamer(tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_kwargs = { |
|
"input_ids": model_inputs.input_ids, |
|
"streamer": streamer, |
|
"max_new_tokens": max_tokens, |
|
"do_sample": do_sample, |
|
"temperature": temperature, |
|
"eos_token_id": terminators, |
|
} |
|
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
partial_text = "" |
|
for new_text in streamer: |
|
partial_text += new_text |
|
yield partial_text |
|
|
|
yield partial_text |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=chat, |
|
examples=[["Write me a poem about Machine Learning."]], |
|
additional_inputs_accordion=gr.Accordion( |
|
label="⚙️ Parameters", open=False, render=False |
|
), |
|
additional_inputs=[ |
|
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature"), |
|
gr.Checkbox(label="Sampling", value=True), |
|
gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="Max new tokens"), |
|
], |
|
stop_btn="Stop Generation", |
|
title="Chat With LLMs", |
|
description="Now Running [CampAIgn/Phi-3-mini_16bit](https://huggingface.co./CampAIgn/Phi-3-mini_16bit)", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |