CamiloVega commited on
Commit
dfdb4d0
Β·
verified Β·
1 Parent(s): 26e73b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -32
README.md CHANGED
@@ -10,59 +10,91 @@ pinned: false
10
  license: mit
11
  short_description: Chat with your docs very Easy
12
  ---
13
- # Easy RAG πŸ€–
14
 
15
- Easy RAG is a powerful and user-friendly Retrieval Augmented Generation (RAG) system that allows users to upload their own documents and query them using state-of-the-art language models.
16
 
17
- ## Features
18
 
19
- - πŸ“„ Support for multiple document formats (PDF, TXT, DOCX)
20
- - πŸ“š Upload up to 5 documents (max 10MB each)
21
- - πŸ” Advanced document processing and chunking
22
- - πŸ’‘ Intelligent question answering using Llama-2
23
- - 🌐 Multilingual support
24
- - πŸš€ GPU-accelerated inference
25
- - πŸ“Š Source tracking and citation
 
26
 
27
  ## Technical Stack
28
 
29
- - **Language Model**: Meta-llama/Llama-2-7b-chat-hf
30
- - **Embeddings**: intfloat/multilingual-e5-large
31
- - **Vector Store**: FAISS
32
- - **UI Framework**: Gradio
33
- - **Document Processing**: LangChain
 
 
 
 
 
 
 
 
 
34
 
35
- ## Installation
36
 
37
- 1. Clone the repository
38
- 2. Install dependencies:
39
  ```bash
 
 
 
 
 
40
  pip install -r requirements.txt
41
- ```
42
- 3. Set up your HuggingFace token as an environment variable:
43
- ```bash
44
  export HUGGINGFACE_TOKEN=your_token_here
45
  ```
46
- 4. Run the application:
 
 
47
  ```bash
48
  python app.py
49
  ```
50
 
51
  ## Usage
52
 
53
- 1. Upload your documents using the file upload interface
54
- 2. Wait for the system to process and index your documents
55
- 3. Start asking questions about your documents
56
- 4. View answers with source citations
 
 
 
57
 
58
- ## Requirements
 
 
 
59
 
60
- See `requirements.txt` for a complete list of dependencies.
61
 
62
- ## Credits
 
 
 
63
 
64
- Based on original work by [Camilo Vega](https://www.linkedin.com/in/camilo-vega-169084b1/), AI Professor and Solutions Consultant.
65
 
66
- ## License
 
 
 
67
 
68
- MIT License
 
 
 
 
 
 
 
10
  license: mit
11
  short_description: Chat with your docs very Easy
12
  ---
13
+ # DocumentGPT - Advanced Document Analysis with RAG
14
 
15
+ ## Overview
16
 
17
+ DocumentGPT is a cutting-edge document analysis system that leverages the power of Retrieval Augmented Generation (RAG) to provide intelligent responses based on your documents. Built with advanced AI technologies, it allows users to upload multiple document types and get accurate, context-aware responses to their questions.
18
 
19
+ ## Key Features
20
+
21
+ - Multi-Format Support: Process PDF, DOCX, CSV, and TXT files seamlessly
22
+ - Advanced RAG Implementation: Using state-of-the-art LLM technology with Llama-2
23
+ - GPU-Accelerated: Optimized performance with GPU acceleration
24
+ - Real-Time Processing: Dynamic document processing and instant responses
25
+ - Source Attribution: Every response includes references to source documents
26
+ - Interactive Interface: User-friendly Gradio interface for easy interaction
27
 
28
  ## Technical Stack
29
 
30
+ - Large Language Model: Llama-2-7b-chat-hf
31
+ - Embeddings: multilingual-e5-large
32
+ - Vector Store: FAISS
33
+ - Framework: Gradio
34
+ - Processing: Langchain
35
+ - Acceleration: HuggingFace Accelerate
36
+
37
+ ## Getting Started
38
+
39
+ ### Prerequisites
40
+
41
+ - Python 3.8 or higher
42
+ - GPU support (recommended)
43
+ - HuggingFace account with access to Llama-2
44
 
45
+ ### Installation
46
 
 
 
47
  ```bash
48
+ # Clone the repository
49
+ git clone https://github.com/yourusername/documentgpt.git
50
+ cd documentgpt
51
+
52
+ # Install dependencies
53
  pip install -r requirements.txt
54
+
55
+ # Set up environment variables
 
56
  export HUGGINGFACE_TOKEN=your_token_here
57
  ```
58
+
59
+ ### Running the Application
60
+
61
  ```bash
62
  python app.py
63
  ```
64
 
65
  ## Usage
66
 
67
+ 1. Launch the application
68
+ 2. Upload your documents (PDF, DOCX, CSV, or TXT)
69
+ 3. Wait for the processing to complete
70
+ 4. Start asking questions about your documents
71
+ 5. View responses with source attributions
72
+
73
+ ## Advanced Features
74
 
75
+ - Dynamic Knowledge Base: Updates in real-time as new documents are added
76
+ - Memory Management: Efficient handling of document processing
77
+ - Source Tracking: Transparent attribution of information sources
78
+ - Optimized Performance: GPU acceleration for faster processing
79
 
80
+ ## Author
81
 
82
+ **Camilo Vega**
83
+ - AI Professor and Solutions Consultant
84
+ - LinkedIn: [Camilo Vega](https://www.linkedin.com/in/camilo-vega-169084b1/)
85
+ - GitHub: [CamiloVega](https://github.com/camilovegag)
86
 
87
+ ## Acknowledgments
88
 
89
+ Special thanks to:
90
+ - HuggingFace for providing GPU acceleration support
91
+ - Meta AI for the Llama-2 model
92
+ - The Langchain community for their excellent tools
93
 
94
+ ## Contact
95
+
96
+ For questions and support, please reach out through:
97
+ - LinkedIn: [Camilo Vega](https://www.linkedin.com/in/camilo-vega-169084b1/)
98
+
99
+ ---
100
+ Made with by Camilo Vega