import os
import gradio as gr
import json
from rxnim import RXNIM
from getReaction import generate_combined_image
import torch
from rxn.reaction import Reaction
from rdkit import Chem
from rdkit.Chem import rdChemReactions
from rdkit.Chem import Draw
PROMPT_DIR = "prompts/"
ckpt_path = "./rxn/model/model.ckpt"
model = Reaction(ckpt_path, device=torch.device('cpu'))
# 定义 prompt 文件名到友好名字的映射
PROMPT_NAMES = {
"2_RxnOCR.txt": "Reaction Image Parsing Workflow",
}
example_diagram = "examples/exp.png"
rdkit_image = "examples/image.webp"
def list_prompt_files_with_names():
"""
列出 prompts 目录下的所有 .txt 文件,为没有名字的生成默认名字。
返回 {friendly_name: filename} 映射。
"""
prompt_files = {}
for f in os.listdir(PROMPT_DIR):
if f.endswith(".txt"):
# 如果文件名有预定义的名字,使用预定义名字
friendly_name = PROMPT_NAMES.get(f, f"Task: {os.path.splitext(f)[0]}")
prompt_files[friendly_name] = f
return prompt_files
def parse_reactions(output_json):
"""
解析 JSON 格式的反应数据并格式化输出,包含颜色定制。
"""
reactions_data = json.loads(output_json) # 转换 JSON 字符串为字典
reactions_list = reactions_data.get("reactions", [])
detailed_output = []
smiles_output = []
for reaction in reactions_list:
reaction_id = reaction.get("reaction_id", "Unknown ID")
reactants = [r.get("smiles", "Unknown") for r in reaction.get("reactants", [])]
conditions = [
f"{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]"
for c in reaction.get("conditions", [])
]
conditions_1 = [
f"{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]"
for c in reaction.get("conditions", [])
]
products = [f"{p.get('smiles', 'Unknown')}" for p in reaction.get("products", [])]
products_1 = [f"{p.get('smiles', 'Unknown')}" for p in reaction.get("products", [])]
products_2 = [r.get("smiles", "Unknown") for r in reaction.get("products", [])]
# 构造反应的完整字符串,定制字体颜色
full_reaction = f"{'.'.join(reactants)}>>{'.'.join(products_1)} | {', '.join(conditions_1)}"
full_reaction = f"{full_reaction}"
# 详细反应格式化输出
reaction_output = f"Reaction: {reaction_id}
"
reaction_output += f" Reactants: {', '.join(reactants)}
"
reaction_output += f" Conditions: {', '.join(conditions)}
"
reaction_output += f" Products: {', '.join(products)}
"
reaction_output += f" Full Reaction: {full_reaction}
"
reaction_output += "
"
detailed_output.append(reaction_output)
reaction_smiles = f"{'.'.join(reactants)}>>{'.'.join(products_2)}"
smiles_output.append(reaction_smiles)
return detailed_output, smiles_output
def process_chem_image(image, selected_task):
chem_mllm = RXNIM()
# 将友好名字转换为实际文件名
prompt_path = os.path.join(PROMPT_DIR, prompts_with_names[selected_task])
image_path = "temp_image.png"
image.save(image_path)
# 调用 RXNIM 处理
rxnim_result = chem_mllm.process(image_path, prompt_path)
# 将 JSON 结果解析为结构化输出
detailed_reactions, smiles_output = parse_reactions(rxnim_result)
# 调用 RxnScribe 模型处理并生成整合图像
predictions = model.predict_image_file(image_path, molscribe=True, ocr=True)
combined_image_path = generate_combined_image(predictions, image_path)
#combined_image_path = model.draw_predictions(predictions, image_path)
json_file_path = "output.json"
with open(json_file_path, "w") as json_file:
json.dump(json.loads(rxnim_result), json_file, indent=4)
# 返回详细反应和整合图像
return "\n\n".join(detailed_reactions), smiles_output, combined_image_path, example_diagram, json_file_path
prompts_with_names = list_prompt_files_with_names()
examples = [
["examples/reaction1.png", "Reaction Image Parsing Workflow"],
["examples/reaction2.png", "Reaction Image Parsing Workflow"],
["examples/reaction3.png", "Reaction Image Parsing Workflow"],
["examples/reaction4.png", "Reaction Image Parsing Workflow"],
]
# 定义 Gradio 界面
with gr.Blocks() as demo:
gr.Markdown(
"""