RxnIM / rxn /reaction /transforms.py
CYF200127's picture
Upload 116 files
5e9bd47 verified
raw
history blame
16.4 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Transforms and data augmentation for both image + bbox.
"""
import random
import math
import PIL
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F
import numpy as np
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)
def box_xyxy_to_cxcywh(x):
x0, y0, x1, y1 = x.unbind(-1)
b = [(x0 + x1) / 2, (y0 + y1) / 2,
(x1 - x0), (y1 - y0)]
return torch.stack(b, dim=-1)
def crop(image, target, region):
cropped_image = F.crop(image, *region)
target = target.copy()
i, j, h, w = region
# should we do something wrt the original size?
# target["size"] = torch.tensor([h, w])
fields = ["labels", "area"]
if "boxes" in target:
boxes = target["boxes"]
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
target["boxes"] = cropped_boxes.reshape(-1, 4)
target["area"] = area
fields.append("boxes")
# remove elements for which the boxes or masks that have zero area
# if "boxes" in target or "masks" in target:
# # favor boxes selection when defining which elements to keep
# # this is compatible with previous implementation
# if "boxes" in target:
# cropped_boxes = target['boxes'].reshape(-1, 2, 2)
# keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
# else:
# keep = target['masks'].flatten(1).any(1)
#
# for field in fields:
# target[field] = target[field][keep]
return cropped_image, target
def hflip(image, target):
flipped_image = F.hflip(image)
w, h = image.size
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
target["boxes"] = boxes
return flipped_image, target
def rotate90(image, target):
rotated_image = image.rotate(90, expand=1)
w, h = rotated_image.size
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
boxes = boxes[:, [1, 2, 3, 0]] * torch.as_tensor([1, -1, 1, -1]) + torch.as_tensor([0, h, 0, h])
target["boxes"] = boxes
return rotated_image, target
def resize(image, target, size, max_size=None):
# size can be min_size (scalar) or (w, h) tuple
def get_size_with_aspect_ratio(image_size, size, max_size=None):
w, h = image_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def get_size(image_size, size, max_size=None):
if isinstance(size, (list, tuple)):
return size[::-1]
else:
return get_size_with_aspect_ratio(image_size, size, max_size)
size = get_size(image.size, size, max_size)
rescaled_image = F.resize(image, size)
if target is None:
return rescaled_image, None
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
ratio_width, ratio_height = ratios
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
target["boxes"] = scaled_boxes
if "area" in target:
area = target["area"]
scaled_area = area * (ratio_width * ratio_height)
target["area"] = scaled_area
return rescaled_image, target
def pad(image, target, padding):
# assumes that we only pad on the bottom right corners
padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
if target is None:
return padded_image, None
target = target.copy()
# should we do something wrt the original size?
target["size"] = torch.tensor(padded_image.size[::-1])
if "masks" in target:
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
return padded_image, target
class RandomCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
region = T.RandomCrop.get_params(img, self.size)
return crop(img, target, region)
class RandomSizeCrop(object):
def __init__(self, min_size: int, max_size: int):
self.min_size = min_size
self.max_size = max_size
def __call__(self, img: PIL.Image.Image, target: dict):
w = random.randint(self.min_size, min(img.width, self.max_size))
h = random.randint(self.min_size, min(img.height, self.max_size))
region = T.RandomCrop.get_params(img, [h, w])
return crop(img, target, region)
class CenterCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
image_width, image_height = img.size
crop_height, crop_width = self.size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
class RandomReactionCrop(object):
def __init__(self):
pass
def __call__(self, img, target):
w, h = img.size
boxes = target["boxes"]
x_avail = [1] * w
y_avail = [1] * h
for reaction in target['reactions']:
ids = reaction['reactants'] + reaction['conditions'] + reaction['products']
rboxes = boxes[ids].round().int()
rmin, _ = rboxes.min(dim=0)
rmax, _ = rboxes.max(dim=0)
x1, x2 = (rmin[0].item(), rmax[2].item())
for i in range(x1, x2):
x_avail[i] = 0
y1, y2 = (rmin[1].item(), rmax[3].item())
for i in range(y1, y2):
y_avail[i] = 0
def sample_from_avail(w):
spans = []
left, right = 0, 0
while right < len(w):
while right < len(w) and w[left] == w[right]:
right += 1
if w[left] == 1:
spans.append((left, right))
left, right = right + 1, right + 1
if w[0] == 0:
spans = [(0, 0)] + spans
if w[-1] == 0:
spans = spans + [(len(w), len(w))]
if len(spans) < 2:
w1 = random.randint(0, len(w))
w2 = random.randint(0, len(w))
else:
spans = random.sample(spans, 2)
w1 = random.randint(*spans[0])
w2 = random.randint(*spans[1])
return min(w1, w2), max(w1, w2)
x1, x2 = sample_from_avail(x_avail)
y1, y2 = sample_from_avail(y_avail)
region = (y1, x1, y2-y1, x2-x1)
if x2-x1 < 30 or y2-y1 < 30:
# Cropped region too small
return img, target
else:
return crop(img, target, region)
class RandomHorizontalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return hflip(img, target)
return img, target
class RandomRotate(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return rotate90(img, target)
return img, target
class RandomResize(object):
def __init__(self, sizes, max_size=None):
assert isinstance(sizes, (list, tuple))
self.sizes = sizes
self.max_size = max_size
def __call__(self, img, target=None):
size = random.choice(self.sizes)
return resize(img, target, size, self.max_size)
class RandomPad(object):
def __init__(self, max_pad):
self.max_pad = max_pad
def __call__(self, img, target):
pad_x = random.randint(0, self.max_pad)
pad_y = random.randint(0, self.max_pad)
return pad(img, target, (pad_x, pad_y))
class RandomSelect(object):
"""
Randomly selects between transforms1 and transforms2,
with probability p for transforms1 and (1 - p) for transforms2
"""
def __init__(self, transforms1, transforms2, p=0.5):
self.transforms1 = transforms1
self.transforms2 = transforms2
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return self.transforms1(img, target)
return self.transforms2(img, target)
class Resize(object):
def __init__(self, size):
assert isinstance(size, (list, tuple))
self.size = size
def __call__(self, img, target=None):
return resize(img, target, self.size)
class ToTensor(object):
def __call__(self, img, target):
return F.to_tensor(img), target
class RandomErasing(object):
def __init__(self, *args, **kwargs):
self.eraser = T.RandomErasing(*args, **kwargs)
def __call__(self, img, target):
return self.eraser(img), target
class Normalize(object):
def __init__(self, mean, std, debug=False):
self.mean = mean
self.std = std
self.debug = debug
def __call__(self, image, target=None):
if not self.debug:
image = F.normalize(image, mean=self.mean, std=self.std)
if target is None:
return image, None
target = target.copy()
h, w = image.shape[-2:]
if "boxes" in target:
boxes = target["boxes"]
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
target["boxes"] = boxes.clamp(min=0, max=1)
return image, target
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target=None):
for t in self.transforms:
image, target = t(image, target)
return image, target
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string
class LargeScaleJitter(object):
"""
implementation of large scale jitter from copy_paste
"""
def __init__(self, output_size=1333, aug_scale_min=0.3, aug_scale_max=2.0):
self.desired_size = output_size
self.aug_scale_min = aug_scale_min
self.aug_scale_max = aug_scale_max
self.random = (aug_scale_min != 1) or (aug_scale_max != 1)
def rescale_target(self, scaled_size, image_size, target):
# compute rescaled targets
image_scale = scaled_size / image_size
ratio_height, ratio_width = image_scale
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
target["boxes"] = scaled_boxes
if "area" in target:
area = target["area"]
scaled_area = area * (ratio_width * ratio_height)
target["area"] = scaled_area
return target
def crop_target(self, region, target):
i, j, h, w = region
fields = ["labels", "area"]
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
target["boxes"] = cropped_boxes.reshape(-1, 4)
target["area"] = area
fields.append("boxes")
# Do not remove the boxes with zero area. Tokenizer does it instead.
# if "boxes" in target:
# # favor boxes selection when defining which elements to keep
# # this is compatible with previous implementation
# cropped_boxes = target['boxes'].reshape(-1, 2, 2)
# keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
# for field in fields:
# target[field] = target[field][keep]
return target
def pad_target(self, padding, target):
# padding: left, top, right, bottom
target = target.copy()
if "boxes" in target:
left, top, right, bottom = padding
target["boxes"][:, 0::2] += left
target["boxes"][:, 1::2] += top
return target
def __call__(self, image, target=None):
image_size = image.size
image_size = torch.tensor(image_size[::-1])
if target is None:
target = {}
# out_desired_size = (self.desired_size * image_size / max(image_size)).round().int()
out_desired_size = torch.tensor([self.desired_size, self.desired_size])
random_scale = torch.rand(1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min
scaled_size = (random_scale * self.desired_size).round()
scale = torch.minimum(scaled_size / image_size[0], scaled_size / image_size[1])
scaled_size = (image_size * scale).round().int().clamp(min=1)
scaled_image = F.resize(image, scaled_size.tolist())
if target is not None:
target = self.rescale_target(scaled_size, image_size, target)
# randomly crop or pad images
delta = scaled_size - out_desired_size
output_image = scaled_image
w, h = scaled_image.size
target["scale"] = [w / self.desired_size, h / self.desired_size]
if delta.lt(0).any():
padding = torch.clamp(-delta, min=0)
if self.random:
padding1 = (torch.rand(1) * padding).round().int()
padding2 = padding - padding1
padding = padding1.tolist()[::-1] + padding2.tolist()[::-1]
else:
padding = [0, 0] + padding.tolist()[::-1]
output_image = F.pad(output_image, padding, 255)
# output_image = F.pad(scaled_image, [0, 0, padding[1].item(), padding[0].item()])
if target is not None:
target = self.pad_target(padding, target)
if delta.gt(0).any():
# Selects non-zero random offset (x, y) if scaled image is larger than desired_size.
max_offset = torch.clamp(delta, min=0)
if self.random:
offset = (max_offset * torch.rand(2)).floor().int()
else:
offset = torch.zeros(2)
region = (offset[0].item(), offset[1].item(), out_desired_size[0].item(), out_desired_size[1].item())
output_image = F.crop(output_image, *region)
if target is not None:
target = self.crop_target(region, target)
return output_image, target
class RandomDistortion(object):
"""
Distort image w.r.t hue, saturation and exposure.
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, prob=0.5):
self.prob = prob
self.tfm = T.ColorJitter(brightness, contrast, saturation, hue)
def __call__(self, img, target=None):
if np.random.random() < self.prob:
return self.tfm(img), target
else:
return img, target