File size: 17,742 Bytes
5e9bd47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import math
import json
import random
import argparse
import numpy as np
import torch
import torch.distributed as dist
import pytorch_lightning as pl
from pytorch_lightning import LightningModule, LightningDataModule
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.strategies.ddp import DDPStrategy
from transformers import get_scheduler
from reaction.model import Encoder, Decoder
from reaction.pix2seq import build_pix2seq_model
from reaction.loss import Criterion
from reaction.tokenizer import get_tokenizer
from reaction.dataset import ReactionDataset, get_collate_fn
from reaction.data import postprocess_reactions
from reaction.evaluate import CocoEvaluator, ReactionEvaluator
import reaction.utils as utils
def get_args(notebook=False):
parser = argparse.ArgumentParser()
parser.add_argument('--do_train', action='store_true')
parser.add_argument('--do_valid', action='store_true')
parser.add_argument('--do_test', action='store_true')
parser.add_argument('--fp16', action='store_true')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--gpus', type=int, default=1)
parser.add_argument('--print_freq', type=int, default=200)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--no_eval', action='store_true')
# Model
parser.add_argument('--encoder', type=str, default='resnet34')
parser.add_argument('--decoder', type=str, default='lstm')
parser.add_argument('--trunc_encoder', action='store_true') # use the hidden states before downsample
parser.add_argument('--no_pretrained', action='store_true')
parser.add_argument('--use_checkpoint', action='store_true')
parser.add_argument('--lstm_dropout', type=float, default=0.5)
parser.add_argument('--embed_dim', type=int, default=256)
parser.add_argument('--enc_pos_emb', action='store_true')
group = parser.add_argument_group("lstm_options")
group.add_argument('--decoder_dim', type=int, default=512)
group.add_argument('--decoder_layer', type=int, default=1)
group.add_argument('--attention_dim', type=int, default=256)
group = parser.add_argument_group("transformer_options")
group.add_argument("--dec_num_layers", help="No. of layers in transformer decoder", type=int, default=6)
group.add_argument("--dec_hidden_size", help="Decoder hidden size", type=int, default=256)
group.add_argument("--dec_attn_heads", help="Decoder no. of attention heads", type=int, default=8)
group.add_argument("--dec_num_queries", type=int, default=128)
group.add_argument("--hidden_dropout", help="Hidden dropout", type=float, default=0.1)
group.add_argument("--attn_dropout", help="Attention dropout", type=float, default=0.1)
group.add_argument("--max_relative_positions", help="Max relative positions", type=int, default=0)
# Pix2Seq
parser.add_argument('--pix2seq', action='store_true', help="specify the model from playground")
parser.add_argument('--pix2seq_ckpt', type=str, default=None)
parser.add_argument('--large_scale_jitter', action='store_true', help='large scale jitter')
parser.add_argument('--pred_eos', action='store_true', help='use eos token instead of predicting 100 objects')
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str, help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--pre_norm', action='store_true')
# Data
parser.add_argument('--data_path', type=str, default=None)
parser.add_argument('--image_path', type=str, default=None)
parser.add_argument('--train_file', type=str, default=None)
parser.add_argument('--valid_file', type=str, default=None)
parser.add_argument('--test_file', type=str, default=None)
parser.add_argument('--vocab_file', type=str, default=None)
parser.add_argument('--format', type=str, default='reaction')
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--input_size', type=int, default=224)
parser.add_argument('--augment', action='store_true')
parser.add_argument('--composite_augment', action='store_true')
parser.add_argument('--coord_bins', type=int, default=100)
parser.add_argument('--sep_xy', action='store_true')
parser.add_argument('--rand_order', action='store_true', help="randomly permute the sequence of input targets")
parser.add_argument('--add_noise', action='store_true')
parser.add_argument('--mix_noise', action='store_true')
parser.add_argument('--shuffle_bbox', action='store_true')
parser.add_argument('--images', type=str, default='')
# Training
parser.add_argument('--epochs', type=int, default=8)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=0.05)
parser.add_argument('--max_grad_norm', type=float, default=5.)
parser.add_argument('--scheduler', type=str, choices=['cosine', 'constant'], default='cosine')
parser.add_argument('--warmup_ratio', type=float, default=0)
parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
parser.add_argument('--load_path', type=str, default=None)
parser.add_argument('--load_encoder_only', action='store_true')
parser.add_argument('--train_steps_per_epoch', type=int, default=-1)
parser.add_argument('--eval_per_epoch', type=int, default=10)
parser.add_argument('--save_path', type=str, default='output/')
parser.add_argument('--save_mode', type=str, default='best', choices=['best', 'all', 'last'])
parser.add_argument('--load_ckpt', type=str, default='best')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--num_train_example', type=int, default=None)
parser.add_argument('--label_smoothing', type=float, default=0.0)
parser.add_argument('--save_image', action='store_true')
# Inference
parser.add_argument('--beam_size', type=int, default=1)
parser.add_argument('--n_best', type=int, default=1)
parser.add_argument('--molscribe', action='store_true')
args = parser.parse_args([]) if notebook else parser.parse_args()
args.images = args.images.split(',')
return args
class ReactionExtractor(LightningModule):
def __init__(self, args, tokenizer):
super().__init__()
self.args = args
self.tokenizer = tokenizer
self.encoder = Encoder(args, pretrained=(not args.no_pretrained))
args.encoder_dim = self.encoder.n_features
self.decoder = Decoder(args, tokenizer)
self.criterion = Criterion(args, tokenizer)
def training_step(self, batch, batch_idx):
indices, images, refs = batch
features, hiddens = self.encoder(images, refs)
results = self.decoder(features, hiddens, refs)
losses = self.criterion(results, refs)
loss = sum(losses.values())
self.log('train/loss', loss)
self.log('lr', self.lr_schedulers().get_lr()[0], prog_bar=True, logger=False)
return loss
def validation_step(self, batch, batch_idx):
indices, images, refs = batch
features, hiddens = self.encoder(images, refs)
batch_preds, batch_beam_preds = self.decoder.decode(
features, hiddens, refs,
beam_size=self.args.beam_size, n_best=self.args.n_best)
return indices, batch_preds
def validation_epoch_end(self, outputs, phase='val'):
if self.trainer.num_devices > 1:
gathered_outputs = [None for i in range(self.trainer.num_devices)]
dist.all_gather_object(gathered_outputs, outputs)
gathered_outputs = sum(gathered_outputs, [])
else:
gathered_outputs = outputs
format = self.args.format
predictions = utils.merge_predictions(gathered_outputs)
name = self.eval_dataset.name
scores = [0]
if self.trainer.is_global_zero:
if not self.args.no_eval:
if format == 'bbox':
coco_evaluator = CocoEvaluator(self.eval_dataset.coco)
stats = coco_evaluator.evaluate(predictions['bbox'])
scores = results = list(stats)
elif format == 'reaction':
epoch = self.trainer.current_epoch
evaluator = ReactionEvaluator()
results, *_ = evaluator.evaluate_summarize(self.eval_dataset.data, predictions['reaction'])
precision, recall, f1 = \
results['overall']['precision'], results['overall']['recall'], results['overall']['f1']
scores = [f1]
self.print(f'Epoch: {epoch:>3} Precision: {precision:.4f} Recall: {recall:.4f} F1: {f1:.4f}')
results['mol_only'], *_ = evaluator.evaluate_summarize(
self.eval_dataset.data, predictions['reaction'], mol_only=True, merge_condition=True)
else:
raise NotImplementedError
with open(os.path.join(self.trainer.default_root_dir, f'eval_{name}.json'), 'w') as f:
json.dump(results, f)
if phase == 'test':
self.print(json.dumps(results, indent=4))
with open(os.path.join(self.trainer.default_root_dir, f'prediction_{name}.json'), 'w') as f:
json.dump(predictions, f)
dist.broadcast_object_list(scores)
self.log(f'{phase}/score', scores[0], prog_bar=True, rank_zero_only=True)
def test_step(self, batch, batch_idx):
return self.validation_step(batch, batch_idx)
def test_epoch_end(self, outputs):
return self.validation_epoch_end(outputs, phase='test')
def predict_step(self, batch, batch_idx):
return self.validation_step(batch, batch_idx)
def configure_optimizers(self):
num_training_steps = self.trainer.num_training_steps
self.print(f'Num training steps: {num_training_steps}')
num_warmup_steps = int(num_training_steps * self.args.warmup_ratio)
# parameters = list(self.encoder.parameters()) + list(self.decoder.parameters())
optimizer = torch.optim.AdamW(self.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay)
scheduler = get_scheduler(self.args.scheduler, optimizer, num_warmup_steps, num_training_steps)
return {'optimizer': optimizer, 'lr_scheduler': {'scheduler': scheduler, 'interval': 'step'}}
class ReactionExtractorPix2Seq(ReactionExtractor):
def __init__(self, args, tokenizer):
super(ReactionExtractor, self).__init__()
self.args = args
self.tokenizer = tokenizer
self.format = args.format
self.model = build_pix2seq_model(args, tokenizer[self.format])
self.criterion = Criterion(args, tokenizer)
self.molscribe = None
def training_step(self, batch, batch_idx):
indices, images, refs = batch
format = self.format
results = {format: (self.model(images, refs[format]), refs[format+'_out'][0][:, 1:])}
losses = self.criterion(results, refs)
loss = sum(losses.values())
self.log('train/loss', loss)
self.log('lr', self.lr_schedulers().get_lr()[0], prog_bar=True, logger=False)
return loss
def validation_step(self, batch, batch_idx):
indices, images, refs = batch
format = self.format
batch_preds = {format: [], 'file_name': []}
pred_seqs, pred_scores = self.model(images, max_len=self.tokenizer[format].max_len)
for i, (seqs, scores) in enumerate(zip(pred_seqs, pred_scores)):
if format == 'reaction':
reactions = self.tokenizer[format].sequence_to_data(seqs.tolist(), scores.tolist(), scale=refs['scale'][i])
reactions = postprocess_reactions(reactions)
batch_preds[format].append(reactions)
if format == 'bbox':
bboxes = self.tokenizer[format].sequence_to_data(seqs.tolist(), scores.tolist(), scale=refs['scale'][i])
batch_preds[format].append(bboxes)
batch_preds['file_name'].append(refs['file_name'][i])
return indices, batch_preds
class ReactionDataModule(LightningDataModule):
def __init__(self, args, tokenizer):
super().__init__()
self.args = args
self.tokenizer = tokenizer
self.collate_fn = get_collate_fn(self.pad_id)
@property
def pad_id(self):
return self.tokenizer[self.args.format].PAD_ID
def prepare_data(self):
args = self.args
if args.do_train:
self.train_dataset = ReactionDataset(args, self.tokenizer, args.train_file, split='train')
if self.args.do_train or self.args.do_valid:
self.val_dataset = ReactionDataset(args, self.tokenizer, args.valid_file, split='valid')
if self.args.do_test:
self.test_dataset = ReactionDataset(args, self.tokenizer, args.test_file, split='test')
def print_stats(self):
if self.args.do_train:
print(f'Train dataset: {len(self.train_dataset)}')
if self.args.do_train or self.args.do_valid:
print(f'Valid dataset: {len(self.val_dataset)}')
if self.args.do_test:
print(f'Test dataset: {len(self.test_dataset)}')
def train_dataloader(self):
return torch.utils.data.DataLoader(
self.train_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
collate_fn=self.collate_fn)
def val_dataloader(self):
return torch.utils.data.DataLoader(
self.val_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
collate_fn=self.collate_fn)
def test_dataloader(self):
return torch.utils.data.DataLoader(
self.test_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
collate_fn=self.collate_fn)
class ModelCheckpoint(pl.callbacks.ModelCheckpoint):
def _get_metric_interpolated_filepath_name(self, monitor_candidates, trainer, del_filepath=None) -> str:
filepath = self.format_checkpoint_name(monitor_candidates)
return filepath
def main():
args = get_args()
pl.seed_everything(args.seed, workers=True)
if args.debug:
args.save_path = "output/debug"
tokenizer = get_tokenizer(args)
MODEL = ReactionExtractorPix2Seq if args.pix2seq else ReactionExtractor
if args.do_train:
model = MODEL(args, tokenizer)
else:
model = MODEL.load_from_checkpoint(os.path.join(args.save_path, 'checkpoints/best.ckpt'), strict=False,
args=args, tokenizer=tokenizer)
dm = ReactionDataModule(args, tokenizer)
dm.prepare_data()
dm.print_stats()
checkpoint = ModelCheckpoint(monitor='val/score', mode='max', save_top_k=1, filename='best', save_last=True)
# checkpoint = ModelCheckpoint(monitor=None, save_top_k=0, save_last=True)
lr_monitor = LearningRateMonitor(logging_interval='step')
logger = pl.loggers.TensorBoardLogger(args.save_path, name='', version='')
trainer = pl.Trainer(
strategy=DDPStrategy(find_unused_parameters=False),
accelerator='gpu',
devices=4,
logger=logger,
default_root_dir=args.save_path,
callbacks=[checkpoint, lr_monitor],
max_epochs=args.epochs,
gradient_clip_val=args.max_grad_norm,
accumulate_grad_batches=args.gradient_accumulation_steps,
check_val_every_n_epoch=args.eval_per_epoch,
log_every_n_steps=10,
deterministic=True)
if args.do_train:
trainer.num_training_steps = math.ceil(
len(dm.train_dataset) / (args.batch_size * args.gpus * args.gradient_accumulation_steps)) * args.epochs
model.eval_dataset = dm.val_dataset
ckpt_path = os.path.join(args.save_path, 'checkpoints/last.ckpt') if args.resume else None
trainer.fit(model, datamodule=dm, ckpt_path=ckpt_path)
model = MODEL.load_from_checkpoint(checkpoint.best_model_path, args=args, tokenizer=tokenizer)
if args.do_valid:
model.eval_dataset = dm.val_dataset
trainer.validate(model, datamodule=dm)
if args.do_test:
model.eval_dataset = dm.test_dataset
trainer.test(model, datamodule=dm)
if __name__ == "__main__":
main()
|