File size: 11,498 Bytes
5e9bd47 f1f2574 32c244d 5e9bd47 32c244d 5e9bd47 f1f2574 5e9bd47 f1f2574 5e9bd47 f1f2574 5e9bd47 f1f2574 5e9bd47 f1f2574 5e9bd47 f1f2574 5e9bd47 32c244d 5e9bd47 32c244d 5e9bd47 f1f2574 32c244d f1f2574 32c244d f1f2574 32c244d f1f2574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import os
import gradio as gr
import json
from rxnim import RXNIM
from getReaction import generate_combined_image
import torch
from rxn.reaction import Reaction
from rdkit import Chem
from rdkit.Chem import rdChemReactions
from rdkit.Chem import Draw
from rdkit.Chem import AllChem
from rdkit.Chem.Draw import rdMolDraw2D
import cairosvg
PROMPT_DIR = "prompts/"
ckpt_path = "./rxn/model/model.ckpt"
model = Reaction(ckpt_path, device=torch.device('cpu'))
# 定义 prompt 文件名到友好名字的映射
PROMPT_NAMES = {
"2_RxnOCR.txt": "Reaction Image Parsing Workflow",
}
example_diagram = "examples/exp.png"
rdkit_image = "examples/rdkit.png"
def list_prompt_files_with_names():
"""
列出 prompts 目录下的所有 .txt 文件,为没有名字的生成默认名字。
返回 {friendly_name: filename} 映射。
"""
prompt_files = {}
for f in os.listdir(PROMPT_DIR):
if f.endswith(".txt"):
# 如果文件名有预定义的名字,使用预定义名字
friendly_name = PROMPT_NAMES.get(f, f"Task: {os.path.splitext(f)[0]}")
prompt_files[friendly_name] = f
return prompt_files
def parse_reactions(output_json):
"""
解析 JSON 格式的反应数据并格式化输出,包含颜色定制。
"""
reactions_data = json.loads(output_json) # 转换 JSON 字符串为字典
reactions_list = reactions_data.get("reactions", [])
detailed_output = []
smiles_output = []
for reaction in reactions_list:
reaction_id = reaction.get("reaction_id", "Unknown ID")
reactants = [r.get("smiles", "Unknown") for r in reaction.get("reactants", [])]
conditions = [
f"<span style='color:red'>{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]</span>"
for c in reaction.get("conditions", [])
]
conditions_1 = [
f"<span style='color:black'>{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]</span>"
for c in reaction.get("conditions", [])
]
products = [f"<span style='color:orange'>{p.get('smiles', 'Unknown')}</span>" for p in reaction.get("products", [])]
products_1 = [f"<span style='color:black'>{p.get('smiles', 'Unknown')}</span>" for p in reaction.get("products", [])]
products_2 = [r.get("smiles", "Unknown") for r in reaction.get("products", [])]
# 构造反应的完整字符串,定制字体颜色
full_reaction = f"{'.'.join(reactants)}>>{'.'.join(products_1)} | {', '.join(conditions_1)}"
full_reaction = f"<span style='color:black'>{full_reaction}</span>"
# 详细反应格式化输出
reaction_output = f"<b>Reaction: </b> {reaction_id}<br>"
reaction_output += f" Reactants: <span style='color:blue'>{', '.join(reactants)}</span><br>"
reaction_output += f" Conditions: {', '.join(conditions)}<br>"
reaction_output += f" Products: {', '.join(products)}<br>"
reaction_output += f" <b>Full Reaction:</b> {full_reaction}<br>"
reaction_output += "<br>"
detailed_output.append(reaction_output)
reaction_smiles = f"{'.'.join(reactants)}>>{'.'.join(products_2)}"
smiles_output.append(reaction_smiles)
return detailed_output, smiles_output
def process_chem_image(image, selected_task):
chem_mllm = RXNIM()
# 将友好名字转换为实际文件名
prompt_path = os.path.join(PROMPT_DIR, prompts_with_names[selected_task])
image_path = "temp_image.png"
image.save(image_path)
# 调用 RXNIM 处理
rxnim_result = chem_mllm.process(image_path, prompt_path)
# 将 JSON 结果解析为结构化输出
detailed_reactions, smiles_output = parse_reactions(rxnim_result)
# 调用 RxnScribe 模型处理并生成整合图像
predictions = model.predict_image_file(image_path, molscribe=True, ocr=True)
combined_image_path = generate_combined_image(predictions, image_path)
#combined_image_path = model.draw_predictions(predictions, image_path)
json_file_path = "output.json"
with open(json_file_path, "w") as json_file:
json.dump(json.loads(rxnim_result), json_file, indent=4)
# 返回详细反应和整合图像
return "\n\n".join(detailed_reactions), smiles_output, combined_image_path, example_diagram, json_file_path
# 获取 prompts 和友好名字
prompts_with_names = list_prompt_files_with_names()
# 示例数据:图像路径 + 任务选项
examples = [
["examples/reaction1.png", "Reaction Image Parsing Workflow"],
["examples/reaction2.png", "Reaction Image Parsing Workflow"],
["examples/reaction3.png", "Reaction Image Parsing Workflow"],
["examples/reaction4.png", "Reaction Image Parsing Workflow"],
]
# 定义 Gradio 界面
with gr.Blocks() as demo:
gr.Markdown(
"""
<center> <h1>Towards Large-scale Chemical Reaction Image Parsing via a Multimodal Large Language Model<h1></center>
Upload a reaction image and select a predefined task prompt.
""")
# 上半部分,输入区域
with gr.Row(equal_height=False):
with gr.Column(scale=1): # 左侧列
image_input = gr.Image(type="pil", label="Upload Reaction Image")
task_radio = gr.Radio(
choices=list(prompts_with_names.keys()),
label="Select a predefined task",
)
with gr.Row(): # Clear 和 Submit 按钮放在同一行
clear_button = gr.Button("Clear")
process_button = gr.Button("Run", elem_id="submit-btn")
gr.Markdown("### Reaction Imge Parsing Output")
reaction_output = gr.HTML(label="Reaction outputs")
with gr.Column(scale=1):
gr.Markdown("### Reaction Extraction Output")
visualization_output = gr.Image(label="Visualization Output")
schematic_diagram = gr.Image(value=example_diagram, label="Schematic Diagram")
with gr.Column(scale=1):
gr.Markdown("### Machine-readable Data Output")
smiles_output = gr.Textbox(
label="Reaction SMILES",
show_copy_button=True,
interactive=False,
visible=False,
)
# 下半部分,图像和 JSON 输出
@gr.render(inputs = smiles_output) # 使用gr.render修饰器绑定输入和渲染逻辑
def show_split(inputs): # 定义处理和展示分割文本的函数
if not inputs or isinstance(inputs, str) and inputs.strip() == "": # 检查输入文本是否为空
return gr.Textbox(label= "SMILES of Reaction i"), gr.Image(value=rdkit_image, label= "RDKit Image of Reaction i",height=100)
else:
# 假设输入是逗号分隔的 SMILES 字符串
smiles_list = inputs.split(",")
smiles_list = [item.strip("[]' ") for item in smiles_list]
components = [] # 初始化一个组件列表,用于存放每个 SMILES 对应的 Textbox 组件
for i, smiles in enumerate(smiles_list):
smiles.replace('"', '').replace("'", "").replace("[", "").replace("]", "")
rxn = rdChemReactions.ReactionFromSmarts(smiles, useSmiles=True)
if rxn:
new_rxn = AllChem.ChemicalReaction()
for mol in rxn.GetReactants():
mol = Chem.MolFromMolBlock(Chem.MolToMolBlock(mol))
new_rxn.AddReactantTemplate(mol)
for mol in rxn.GetProducts():
mol = Chem.MolFromMolBlock(Chem.MolToMolBlock(mol))
new_rxn.AddProductTemplate(mol)
rxn = new_rxn
def atom_mapping_remover(rxn):
for reactant in rxn.GetReactants():
for atom in reactant.GetAtoms():
atom.SetAtomMapNum(0)
for product in rxn.GetProducts():
for atom in product.GetAtoms():
atom.SetAtomMapNum(0)
return rxn
atom_mapping_remover(rxn)
reactant1 = rxn.GetReactantTemplate(0)
print(reactant1.GetNumBonds)
reactant2 = rxn.GetReactantTemplate(1) if rxn.GetNumReactantTemplates() > 1 else None
if reactant1.GetNumBonds() > 0:
bond_length_reference = Draw.MeanBondLength(reactant1)
elif reactant2 and reactant2.GetNumBonds() > 0:
bond_length_reference = Draw.MeanBondLength(reactant2)
else:
bond_length_reference = 1.0
drawer = rdMolDraw2D.MolDraw2DSVG(-1, -1)
dopts = drawer.drawOptions()
dopts.padding = 0.1
dopts.includeRadicals = True
Draw.SetACS1996Mode(dopts, bond_length_reference*0.55)
dopts.bondLineWidth = 1.5
drawer.DrawReaction(rxn)
drawer.FinishDrawing()
svg_content = drawer.GetDrawingText()
svg_file = f"reaction{i+1}.svg"
with open(svg_file, "w") as f:
f.write(svg_content)
png_file = f"reaction_{i+1}.png"
cairosvg.svg2png(url=svg_file, write_to=png_file)
components.append(gr.Textbox(value=smiles,label= f"Reaction {i + 1} SMILES", show_copy_button=True, interactive=False))
components.append(gr.Image(value=png_file,label= f"Reaction {i + 1} RDKit Image"))
return components # 返回包含所有 SMILES Textbox 组件的列表
download_json = gr.File(label="Download JSON File",)
# 示例部分
gr.Examples(
examples=examples,
inputs=[image_input, task_radio],
outputs=[reaction_output, smiles_output, visualization_output],
)
# 绑定功能
clear_button.click(
lambda: (None, None, None, None, None),
inputs=[],
outputs=[
image_input,
task_radio,
reaction_output,
smiles_output,
visualization_output,
],
)
process_button.click(
process_chem_image,
inputs=[image_input, task_radio],
outputs=[
reaction_output,
smiles_output,
visualization_output,
schematic_diagram,
download_json,
],
)
demo.css = """
#submit-btn {
background-color: #FF914D;
color: white;
font-weight: bold;
}
"""
demo.launch() |