Spaces:
Runtime error
Runtime error
infer demo
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- .gitignore +6 -0
- Marvelous_Maisel.jpg +0 -0
- README.md +1 -1
- app.py +144 -0
- data.py +205 -0
- data/webcam/input/00000.png +0 -0
- data/webcam/input/00001.png +0 -0
- data/webcam/input/00002.png +0 -0
- data/webcam/input/00003.png +0 -0
- data/webcam/input/00004.png +0 -0
- data/webcam/input/00005.png +0 -0
- data/webcam/input/00006.png +0 -0
- data/webcam/input/00007.png +0 -0
- data/webcam/input/00008.png +0 -0
- data/webcam/input/00009.png +0 -0
- data/webcam/input/00010.png +0 -0
- data/webcam/input/00011.png +0 -0
- data/webcam/input/00012.png +0 -0
- data/webcam/input/00013.png +0 -0
- data/webcam/input/00014.png +0 -0
- data/webcam/input/00015.png +0 -0
- data/webcam/input/00016.png +0 -0
- data/webcam/input/00017.png +0 -0
- data/webcam/input/00018.png +0 -0
- data/webcam/input/00019.png +0 -0
- data/webcam/input/00020.png +0 -0
- data/webcam/input/00021.png +0 -0
- data/webcam/input/00022.png +0 -0
- data/webcam/input/00023.png +0 -0
- data/webcam/input/00024.png +0 -0
- data/webcam/input/00025.png +0 -0
- data/webcam/input/00026.png +0 -0
- data/webcam/input/00027.png +0 -0
- data/webcam/input/00028.png +0 -0
- data/webcam/input/00029.png +0 -0
- data/webcam/input/00030.png +0 -0
- data/webcam/input/00031.png +0 -0
- data/webcam/input/00032.png +0 -0
- data/webcam/input/00033.png +0 -0
- data/webcam/input/00034.png +0 -0
- data/webcam/input/00035.png +0 -0
- data/webcam/input/00036.png +0 -0
- data/webcam/input/00037.png +0 -0
- data/webcam/input/00038.png +0 -0
- data/webcam/input/00039.png +0 -0
- data/webcam/input/00040.png +0 -0
- data/webcam/input/00041.png +0 -0
- data/webcam/input/00042.png +0 -0
- data/webcam/input/00043.png +0 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
result/*
|
2 |
+
input/*
|
3 |
+
output/*
|
4 |
+
*.gif
|
5 |
+
nc_workspace/*
|
6 |
+
flagged/*
|
Marvelous_Maisel.jpg
ADDED
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
title: BigDL-Nano Inference
|
3 |
emoji: 🌖
|
4 |
-
colorFrom:
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.13
|
|
|
1 |
---
|
2 |
title: BigDL-Nano Inference
|
3 |
emoji: 🌖
|
4 |
+
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.13
|
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import time
|
4 |
+
from data import write_image_tensor, PatchDataModule, prepare_data, image2tensor, tensor2image
|
5 |
+
import torch
|
6 |
+
from tqdm import tqdm
|
7 |
+
from bigdl.nano.pytorch.trainer import Trainer
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
from pathlib import Path
|
10 |
+
from torch.utils.data import Dataset
|
11 |
+
import datetime
|
12 |
+
|
13 |
+
|
14 |
+
device = 'cpu'
|
15 |
+
dtype = torch.float32
|
16 |
+
generator = torch.load("models/generator.pt")
|
17 |
+
generator.eval()
|
18 |
+
generator.to(device, dtype)
|
19 |
+
params = {'batch_size': 1,
|
20 |
+
'num_workers': 0}
|
21 |
+
|
22 |
+
|
23 |
+
class ImageDataset(Dataset):
|
24 |
+
def __init__(self, img):
|
25 |
+
self.imgs = [image2tensor(img)]
|
26 |
+
def __getitem__(self, idx: int) -> dict:
|
27 |
+
return self.imgs[idx]
|
28 |
+
|
29 |
+
def __len__(self) -> int:
|
30 |
+
return len(self.imgs)
|
31 |
+
|
32 |
+
|
33 |
+
# quantize model
|
34 |
+
data_path = Path('data/webcam')
|
35 |
+
train_image_dd = prepare_data(data_path)
|
36 |
+
dm = PatchDataModule(train_image_dd, patch_size=2**6,
|
37 |
+
batch_size=2**3, patch_num=2**6)
|
38 |
+
train_loader = dm.train_dataloader()
|
39 |
+
train_loader_iter = iter(train_loader)
|
40 |
+
quantized_model = Trainer.quantize(generator, accelerator=None,
|
41 |
+
calib_dataloader=train_loader)
|
42 |
+
|
43 |
+
|
44 |
+
def original_transfer(input_img):
|
45 |
+
w, h, _ = input_img.shape
|
46 |
+
print(datetime.datetime.now())
|
47 |
+
print("input size: ", w, h)
|
48 |
+
# resize too large image
|
49 |
+
if w > 3000 or h > 3000:
|
50 |
+
ratio = min(3000 / w, 3000 / h)
|
51 |
+
w = int(w * ratio)
|
52 |
+
h = int(h * ratio)
|
53 |
+
if w % 4 != 0 or h % 4 != 0:
|
54 |
+
NW = int((w // 4) * 4)
|
55 |
+
NH = int((h // 4) * 4)
|
56 |
+
input_img = np.resize(input_img,(NW,NH,3))
|
57 |
+
st = time.perf_counter()
|
58 |
+
dataset = ImageDataset(input_img)
|
59 |
+
loader = DataLoader(dataset, **params)
|
60 |
+
with torch.no_grad():
|
61 |
+
for inputs in tqdm(loader):
|
62 |
+
inputs = inputs.to(device, dtype)
|
63 |
+
st = time.perf_counter()
|
64 |
+
outputs = generator(inputs)
|
65 |
+
ori_time = time.perf_counter() - st
|
66 |
+
ori_time = "{:.3f}s".format(ori_time)
|
67 |
+
ori_image = np.array(tensor2image(outputs[0]))
|
68 |
+
del inputs
|
69 |
+
del outputs
|
70 |
+
return ori_image, ori_time
|
71 |
+
|
72 |
+
def nano_transfer(input_img):
|
73 |
+
w, h, _ = input_img.shape
|
74 |
+
print(datetime.datetime.now())
|
75 |
+
print("input size: ", w, h)
|
76 |
+
# resize too large image
|
77 |
+
if w > 3000 or h > 3000:
|
78 |
+
ratio = min(3000 / w, 3000 / h)
|
79 |
+
w = int(w * ratio)
|
80 |
+
h = int(h * ratio)
|
81 |
+
if w % 4 != 0 or h % 4 != 0:
|
82 |
+
NW = int((w // 4) * 4)
|
83 |
+
NH = int((h // 4) * 4)
|
84 |
+
input_img = np.resize(input_img,(NW,NH,3))
|
85 |
+
st = time.perf_counter()
|
86 |
+
dataset = ImageDataset(input_img)
|
87 |
+
loader = DataLoader(dataset, **params)
|
88 |
+
with torch.no_grad():
|
89 |
+
for inputs in tqdm(loader):
|
90 |
+
inputs = inputs.to(device, dtype)
|
91 |
+
st = time.perf_counter()
|
92 |
+
outputs = quantized_model(inputs)
|
93 |
+
nano_time = time.perf_counter() - st
|
94 |
+
nano_time = "{:.3f}s".format(nano_time)
|
95 |
+
nano_image = np.array(tensor2image(outputs[0]))
|
96 |
+
del inputs
|
97 |
+
del outputs
|
98 |
+
return nano_image, nano_time
|
99 |
+
|
100 |
+
|
101 |
+
def clear():
|
102 |
+
return None, None, None, None
|
103 |
+
|
104 |
+
|
105 |
+
demo = gr.Blocks()
|
106 |
+
|
107 |
+
with demo:
|
108 |
+
gr.Markdown("<h1><center>BigDL-Nano inference demo</center></h1>")
|
109 |
+
with gr.Row().style(equal_height=False):
|
110 |
+
with gr.Column():
|
111 |
+
gr.Markdown('''
|
112 |
+
<h2>Overview</h2>
|
113 |
+
|
114 |
+
BigDL-Nano is a library in [BigDL 2.0](https://github.com/intel-analytics/BigDL) that allows the users to transparently accelerate their deep learning pipelines (including data processing, training and inference) by automatically integrating optimized libraries, best-known configurations, and software optimizations. </p>
|
115 |
+
|
116 |
+
The video on the right shows how the user can easily enable quantization using BigDL-Nano (with just a couple of lines of code); you may refer to our [CVPR 2022 demo paper](https://arxiv.org/abs/2204.01715) for more details.
|
117 |
+
''')
|
118 |
+
with gr.Column():
|
119 |
+
gr.Video(value="nano_quantize_api.mp4")
|
120 |
+
gr.Markdown('''
|
121 |
+
<h2>Demo</h2>
|
122 |
+
|
123 |
+
This section uses an image stylization example to demostrate the speedup of the above code when using quantization in BigDL-Nano (about 2~3x inference time speedup). The demo is adapted from the original [FSPBT-Image-Translation code](https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/eval.py).
|
124 |
+
''')
|
125 |
+
with gr.Row().style(equal_height=False):
|
126 |
+
input_img = gr.Image(label="input image", value="Marvelous_Maisel.jpg", source="upload")
|
127 |
+
with gr.Column():
|
128 |
+
ori_but = gr.Button("Standard PyTorch Lightning")
|
129 |
+
nano_but = gr.Button("BigDL-Nano")
|
130 |
+
clear_but = gr.Button("Clear Output")
|
131 |
+
with gr.Row().style(equal_height=False):
|
132 |
+
with gr.Column():
|
133 |
+
ori_time = gr.Text(label="Standard PyTorch Lightning latency")
|
134 |
+
ori_image = gr.Image(label="Standard PyTorch Lightning output image")
|
135 |
+
with gr.Column():
|
136 |
+
nano_time = gr.Text(label="BigDL-Nano latency")
|
137 |
+
nano_image = gr.Image(label="BigDL-Nano output image")
|
138 |
+
|
139 |
+
ori_but.click(original_transfer, inputs=input_img, outputs=[ori_image, ori_time])
|
140 |
+
nano_but.click(nano_transfer, inputs=input_img, outputs=[nano_image, nano_time])
|
141 |
+
clear_but.click(clear, inputs=None, outputs=[ori_image, ori_time, nano_image, nano_time])
|
142 |
+
|
143 |
+
|
144 |
+
demo.launch(share=True, enable_queue=True)
|
data.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Dict
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
import torchvision.transforms.functional as F
|
5 |
+
from bigdl.nano.pytorch.vision.transforms import transforms
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
from collections.abc import Iterable
|
8 |
+
# image reader writer
|
9 |
+
from pathlib import Path
|
10 |
+
from PIL import Image
|
11 |
+
from typing import Tuple
|
12 |
+
|
13 |
+
|
14 |
+
def read_image(filepath: Path, mode: str = None) -> Image:
|
15 |
+
with open(filepath, 'rb') as file:
|
16 |
+
image = Image.open(file)
|
17 |
+
return image.convert(mode)
|
18 |
+
|
19 |
+
|
20 |
+
image2tensor = transforms.ToTensor()
|
21 |
+
tensor2image = transforms.ToPILImage()
|
22 |
+
|
23 |
+
|
24 |
+
def write_image(image: Image, filepath: Path):
|
25 |
+
filepath.parent.mkdir(parents=True, exist_ok=True)
|
26 |
+
image.save(str(filepath))
|
27 |
+
|
28 |
+
|
29 |
+
def read_image_tensor(filepath: Path, mode: str = 'RGB') -> torch.Tensor:
|
30 |
+
return image2tensor(read_image(filepath, mode))
|
31 |
+
|
32 |
+
|
33 |
+
def write_image_tensor(input: torch.Tensor, filepath: Path):
|
34 |
+
write_image(tensor2image(input), filepath)
|
35 |
+
|
36 |
+
|
37 |
+
def get_valid_indices(H: int, W: int, patch_size: int, random_overlap: int = 0):
|
38 |
+
|
39 |
+
vih = torch.arange(random_overlap, H-patch_size -
|
40 |
+
random_overlap+1, patch_size)
|
41 |
+
viw = torch.arange(random_overlap, W-patch_size -
|
42 |
+
random_overlap+1, patch_size)
|
43 |
+
if random_overlap > 0:
|
44 |
+
rih = torch.randint_like(vih, -random_overlap, random_overlap)
|
45 |
+
riw = torch.randint_like(viw, -random_overlap, random_overlap)
|
46 |
+
vih += rih
|
47 |
+
viw += riw
|
48 |
+
vi = torch.stack(torch.meshgrid(vih, viw)).view(2, -1).t()
|
49 |
+
return vi
|
50 |
+
|
51 |
+
|
52 |
+
def cut_patches(input: torch.Tensor, indices: Tuple[Tuple[int, int]], patch_size: int, padding: int = 0):
|
53 |
+
# TODO use slices to get all patches at the same time ?
|
54 |
+
|
55 |
+
patches_l = []
|
56 |
+
for n in range(len(indices)):
|
57 |
+
|
58 |
+
patch = F.crop(input, *(indices[n]-padding),
|
59 |
+
*(patch_size+padding*2,)*2)
|
60 |
+
patches_l.append(patch)
|
61 |
+
patches = torch.cat(patches_l, dim=0)
|
62 |
+
|
63 |
+
return patches
|
64 |
+
|
65 |
+
|
66 |
+
def prepare_data(data_path: Path, read_func: Callable = read_image_tensor) -> Dict:
|
67 |
+
"""
|
68 |
+
Takes a data_path of a folder which contains subfolders with input, target, etc.
|
69 |
+
lablelled by the same names.
|
70 |
+
|
71 |
+
:param data_path: Path of the folder containing data
|
72 |
+
:param read_func: function that reads data and returns a tensor
|
73 |
+
"""
|
74 |
+
data_dict = {}
|
75 |
+
|
76 |
+
subdir_names = ["target", "input", "mask"] # ,"helper"
|
77 |
+
|
78 |
+
# checks only files for which there is an target
|
79 |
+
# TODO check for images
|
80 |
+
name_ls = [file.name for file in (
|
81 |
+
data_path / "target").iterdir() if file.is_file()] # 数据集大小=3
|
82 |
+
subdirs = [data_path / sdn for sdn in subdir_names]
|
83 |
+
for sd in subdirs:
|
84 |
+
if sd.is_dir():
|
85 |
+
data_ls = []
|
86 |
+
files = [sd / name for name in name_ls]
|
87 |
+
for file in files:
|
88 |
+
tensor = read_func(file)
|
89 |
+
H, W = tensor.shape[-2:]
|
90 |
+
data_ls.append(tensor)
|
91 |
+
# TODO check that all sizes match
|
92 |
+
data_dict[sd.name] = torch.stack(data_ls, dim=0)
|
93 |
+
|
94 |
+
data_dict['name'] = name_ls
|
95 |
+
data_dict['len'] = len(data_dict['name'])
|
96 |
+
data_dict['H'] = H
|
97 |
+
data_dict['W'] = W
|
98 |
+
return data_dict
|
99 |
+
|
100 |
+
|
101 |
+
# TODO an image is loaded whenever a patch is needed, this may be a bottleneck
|
102 |
+
class DataDictLoader():
|
103 |
+
def __init__(self, data_dict: Dict,
|
104 |
+
batch_size: int = 16,
|
105 |
+
max_length: int = 128,
|
106 |
+
shuffle: bool = False):
|
107 |
+
"""
|
108 |
+
|
109 |
+
"""
|
110 |
+
|
111 |
+
self.batch_size = batch_size
|
112 |
+
self.shuffle = shuffle
|
113 |
+
|
114 |
+
self.batch_size = batch_size
|
115 |
+
|
116 |
+
self.data_dict = data_dict
|
117 |
+
self.dataset_len = data_dict['len'] # train: 93
|
118 |
+
self.len = self.dataset_len if max_length is None else min(
|
119 |
+
self.dataset_len, max_length)
|
120 |
+
# Calculate # batches
|
121 |
+
num_batches, remainder = divmod(self.len, self.batch_size)
|
122 |
+
if remainder > 0:
|
123 |
+
num_batches += 1
|
124 |
+
self.num_batches = num_batches
|
125 |
+
|
126 |
+
|
127 |
+
def __iter__(self):
|
128 |
+
if self.shuffle:
|
129 |
+
r = torch.randperm(self.dataset_len)
|
130 |
+
self.data_dict = {k: v[r] if isinstance(
|
131 |
+
v, Iterable) else v for k, v in self.data_dict.items()}
|
132 |
+
self.i = 0
|
133 |
+
return self
|
134 |
+
|
135 |
+
def __next__(self):
|
136 |
+
if self.i >= self.len:
|
137 |
+
raise StopIteration
|
138 |
+
batch = {k: v[self.i:self.i+self.batch_size]
|
139 |
+
if isinstance(v, Iterable) else v for k, v in self.data_dict.items()}
|
140 |
+
|
141 |
+
self.i += self.batch_size
|
142 |
+
return batch
|
143 |
+
|
144 |
+
def __len__(self):
|
145 |
+
return self.num_batches
|
146 |
+
|
147 |
+
|
148 |
+
class PatchDataModule(pl.LightningDataModule):
|
149 |
+
|
150 |
+
def __init__(self, data_dict,
|
151 |
+
patch_size: int = 2**5,
|
152 |
+
batch_size: int = 2**4,
|
153 |
+
patch_num: int = 2**6):
|
154 |
+
super().__init__()
|
155 |
+
self.data_dict = data_dict
|
156 |
+
self.H, self.W = data_dict['H'], data_dict['W']
|
157 |
+
self.len = data_dict['len']
|
158 |
+
|
159 |
+
self.batch_size = batch_size
|
160 |
+
self.patch_size = patch_size # 32
|
161 |
+
self.patch_num = patch_num # 64
|
162 |
+
|
163 |
+
def dataloader(self, data_dict, **kwargs):
|
164 |
+
return DataDictLoader(data_dict, **kwargs)
|
165 |
+
|
166 |
+
def train_dataloader(self):
|
167 |
+
patches = self.cut_patches()
|
168 |
+
return self.dataloader(patches, batch_size=self.batch_size, shuffle=True,
|
169 |
+
max_length=self.patch_num) # patch num = 64
|
170 |
+
|
171 |
+
def val_dataloader(self):
|
172 |
+
return self.dataloader(self.data_dict, batch_size=1)
|
173 |
+
|
174 |
+
def test_dataloader(self):
|
175 |
+
return self.dataloader(self.data_dict) # TODO batch size
|
176 |
+
|
177 |
+
def cut_patches(self):
|
178 |
+
# TODO cycle once
|
179 |
+
patch_indices = get_valid_indices(
|
180 |
+
self.H, self.W, self.patch_size, self.patch_size//4)
|
181 |
+
dd = {k: cut_patches(
|
182 |
+
v, patch_indices, self.patch_size) for k, v in self.data_dict.items()
|
183 |
+
if isinstance(v, torch.Tensor)
|
184 |
+
}
|
185 |
+
threshold = 0.1
|
186 |
+
mask_p = torch.mean(
|
187 |
+
dd.get('mask', torch.ones_like(dd['input'])), dim=(-1, -2, -3))
|
188 |
+
masked_idx = (mask_p > threshold).nonzero(as_tuple=True)[0]
|
189 |
+
dd = {k: v[masked_idx] for k, v in dd.items()}
|
190 |
+
dd['len'] = len(masked_idx)
|
191 |
+
dd['H'], dd['W'] = (self.patch_size,)*2
|
192 |
+
|
193 |
+
return dd
|
194 |
+
|
195 |
+
|
196 |
+
class ImageDataset(Dataset):
|
197 |
+
def __init__(self, file_paths: Iterable, read_func: Callable = read_image_tensor):
|
198 |
+
self.file_paths = file_paths
|
199 |
+
|
200 |
+
def __getitem__(self, idx: int) -> dict:
|
201 |
+
file = self.file_paths[idx]
|
202 |
+
return read_image_tensor(file), file.name
|
203 |
+
|
204 |
+
def __len__(self) -> int:
|
205 |
+
return len(self.file_paths)
|
data/webcam/input/00000.png
ADDED
data/webcam/input/00001.png
ADDED
data/webcam/input/00002.png
ADDED
data/webcam/input/00003.png
ADDED
data/webcam/input/00004.png
ADDED
data/webcam/input/00005.png
ADDED
data/webcam/input/00006.png
ADDED
data/webcam/input/00007.png
ADDED
data/webcam/input/00008.png
ADDED
data/webcam/input/00009.png
ADDED
data/webcam/input/00010.png
ADDED
data/webcam/input/00011.png
ADDED
data/webcam/input/00012.png
ADDED
data/webcam/input/00013.png
ADDED
data/webcam/input/00014.png
ADDED
data/webcam/input/00015.png
ADDED
data/webcam/input/00016.png
ADDED
data/webcam/input/00017.png
ADDED
data/webcam/input/00018.png
ADDED
data/webcam/input/00019.png
ADDED
data/webcam/input/00020.png
ADDED
data/webcam/input/00021.png
ADDED
data/webcam/input/00022.png
ADDED
data/webcam/input/00023.png
ADDED
data/webcam/input/00024.png
ADDED
data/webcam/input/00025.png
ADDED
data/webcam/input/00026.png
ADDED
data/webcam/input/00027.png
ADDED
data/webcam/input/00028.png
ADDED
data/webcam/input/00029.png
ADDED
data/webcam/input/00030.png
ADDED
data/webcam/input/00031.png
ADDED
data/webcam/input/00032.png
ADDED
data/webcam/input/00033.png
ADDED
data/webcam/input/00034.png
ADDED
data/webcam/input/00035.png
ADDED
data/webcam/input/00036.png
ADDED
data/webcam/input/00037.png
ADDED
data/webcam/input/00038.png
ADDED
data/webcam/input/00039.png
ADDED
data/webcam/input/00040.png
ADDED
data/webcam/input/00041.png
ADDED
data/webcam/input/00042.png
ADDED
data/webcam/input/00043.png
ADDED