from io import BytesIO from typing import Tuple import wave import gradio as gr import numpy as np from pydub.audio_segment import AudioSegment import requests from os.path import exists from stt import Model import torch import torchaudio from speechbrain.pretrained import EncoderClassifier # initialize language ID model lang_classifier = EncoderClassifier.from_hparams( source="speechbrain/lang-id-commonlanguage_ecapa", savedir="pretrained_models/lang-id-commonlanguage_ecapa" ) # download STT model model_info = { "mixteco": ("https://coqui.gateway.scarf.sh/mixtec/jemeyer/v1.0.0/model.tflite", "mixtec.tflite"), "chatino": ("https://coqui.gateway.scarf.sh/chatino/bozden/v1.0.0/model.tflite", "chatino.tflite"), "totonaco": ("https://coqui.gateway.scarf.sh/totonac/bozden/v1.0.0/model.tflite", "totonac.tflite"), "español": ("jonatasgrosman/wav2vec2-large-xlsr-53-spanish", "spanish_xlsr"), "inglés": ("facebook/wav2vec2-large-robust-ft-swbd-300h", "english_xlsr"), } def client(audio_data: np.array, sample_rate: int, default_lang: str): output_audio = _convert_audio(audio_data, sample_rate) waveform, _ = torchaudio.load(output_audio) out_prob, score, index, text_lab = lang_classifier.classify_batch(waveform) output_audio.seek(0) fin = wave.open(output_audio, 'rb') audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16) fin.close() if text_lab == 'Spanish': processor, model = STT_MODELS['español'] inputs = processor(waveform) logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits result = processor.decode(torch.argmax(logits, dim=-1).cpu().tolist()) else: ds = STT_MODELS[default_lang] result = ds.stt(audio) return f"{text_lab}: {result}" def load_models(language): if language in STT_MODELS: return STT_MODELS[language] model_path, file_name = model_info.get("language", ("", "")) if model_path.startswith('http'): if not exists(file_name): print(f"Downloading {model_path}") r = requests.get(model_path, allow_redirects=True) with open(file_name, 'wb') as file: file.write(r.content) else: print(f"Found {file_name}. Skipping download...") return Model(file_name) processor = Wav2Vec2Processor.from_pretrained(model_path) model = AutoModelForCTC.from_pretrained(model_path) return processor, model def stt(default_lang: str, audio: Tuple[int, np.array]): sample_rate, audio = audio use_scorer = False recognized_result = client(audio, sample_rate, default_lang) return recognized_result def _convert_audio(audio_data: np.array, sample_rate: int): source_audio = BytesIO() source_audio.write(audio_data) source_audio.seek(0) output_audio = BytesIO() wav_file = AudioSegment.from_raw( source_audio, channels=1, sample_width=2, frame_rate=sample_rate ) wav_file.set_frame_rate(16000).set_channels(1).export(output_audio, "wav", codec="pcm_s16le") output_audio.seek(0) return output_audio iface = gr.Interface( fn=stt, inputs=[ gr.inputs.Radio(choices=("chatino", "mixteco", "totonaco"), default="mixteco", label="Lengua principal"), gr.inputs.Audio(type="numpy", label="Audio", optional=False), ], outputs=gr.outputs.Textbox(label="Output"), title="Coqui STT Yoloxochitl Mixtec", theme="huggingface", description="Prueba de dictado a texto para el mixteco de Yoloxochitl," " usando [el modelo entrenado por Josh Meyer](https://coqui.ai/mixtec/jemeyer/v1.0.0/)" " con [los datos recopilados por Rey Castillo y sus colaboradores](https://www.openslr.org/89)." " Esta prueba es basada en la de [Ukraniano](https://huggingface.co./spaces/robinhad/ukrainian-stt)." " \n\n" "Speech-to-text demo for Yoloxochitl Mixtec," " using [the model trained by Josh Meyer](https://coqui.ai/mixtec/jemeyer/v1.0.0/)" " on [the corpus compiled by Rey Castillo and collaborators](https://www.openslr.org/89)." " This demo is based on the [Ukrainian STT demo](https://huggingface.co./spaces/robinhad/ukrainian-stt).", ) STT_MODELS = {lang: load_models(lang) for lang in ("inglés", "español")} iface.launch()