Spaces:
Runtime error
Runtime error
from io import BytesIO | |
from typing import Tuple | |
import wave | |
import gradio as gr | |
import numpy as np | |
from pydub.audio_segment import AudioSegment | |
import requests | |
from os.path import exists | |
from stt import Model | |
import torchaudio | |
from speechbrain.pretrained import EncoderClassifier | |
# initialize language ID model | |
lang_classifier = EncoderClassifier.from_hparams(source="speechbrain/lang-id-commonlanguage_ecapa", savedir="pretrained_models/lang-id-commonlanguage_ecapa") | |
# download STT model | |
storage_url = "https://coqui.gateway.scarf.sh/mixtec/jemeyer/v1.0.0" | |
model_name = "model.tflite" | |
model_link = f"{storage_url}/{model_name}" | |
def client(audio_data: np.array, sample_rate: int, use_scorer=False): | |
output_audio = _convert_audio(audio_data, sample_rate) | |
out_prob, score, index, text_lab = lang_classifier.classify_file(output_audio) | |
fin = wave.open(output_audio, 'rb') | |
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16) | |
fin.close() | |
ds = Model(model_name) | |
if use_scorer: | |
ds.enableExternalScorer("kenlm.scorer") | |
result = ds.stt(audio) | |
return f"{text_lab}: {result}" | |
def download(url, file_name): | |
if not exists(file_name): | |
print(f"Downloading {file_name}") | |
r = requests.get(url, allow_redirects=True) | |
with open(file_name, 'wb') as file: | |
file.write(r.content) | |
else: | |
print(f"Found {file_name}. Skipping download...") | |
def stt(audio: Tuple[int, np.array]): | |
sample_rate, audio = audio | |
use_scorer = False | |
recognized_result = client(audio, sample_rate, use_scorer) | |
return recognized_result | |
def _convert_audio(audio_data: np.array, sample_rate: int): | |
source_audio = BytesIO() | |
source_audio.write(audio_data) | |
source_audio.seek(0) | |
output_audio = BytesIO() | |
wav_file = AudioSegment.from_raw( | |
source_audio, | |
channels=1, | |
sample_width=2, | |
frame_rate=sample_rate | |
) | |
wav_file.set_frame_rate(16000).set_channels( | |
1).export(output_audio, "wav", codec="pcm_s16le") | |
output_audio.seek(0) | |
return output_audio | |
iface = gr.Interface( | |
fn=stt, | |
inputs=[ | |
gr.inputs.Audio(type="numpy", | |
label=None, optional=False), | |
], | |
outputs=gr.outputs.Textbox(label="Output"), | |
title="Coqui STT Yoloxochitl Mixtec", | |
theme="huggingface", | |
description="Prueba de dictado a texto para el mixteco de Yoloxochitl," | |
" usando [el modelo entrenado por Josh Meyer](https://coqui.ai/mixtec/jemeyer/v1.0.0/)" | |
" con [los datos recopilados por Rey Castillo y sus colaboradores](https://www.openslr.org/89)." | |
" Esta prueba es basada en la de [Ukraniano](https://huggingface.co./spaces/robinhad/ukrainian-stt)." | |
" \n\n" | |
"Speech-to-text demo for Yoloxochitl Mixtec," | |
" using [the model trained by Josh Meyer](https://coqui.ai/mixtec/jemeyer/v1.0.0/)" | |
" on [the corpus compiled by Rey Castillo and collaborators](https://www.openslr.org/89)." | |
" This demo is based on the [Ukrainian STT demo](https://huggingface.co./spaces/robinhad/ukrainian-stt).", | |
) | |
download(model_link, model_name) | |
iface.launch() | |