Spaces:
Runtime error
Runtime error
from io import BytesIO | |
from typing import Tuple | |
import wave | |
import gradio as gr | |
import numpy as np | |
from pydub.audio_segment import AudioSegment | |
import requests | |
from os.path import exists | |
from stt import Model | |
import torch | |
import torchaudio | |
from speechbrain.pretrained import EncoderClassifier | |
# initialize language ID model | |
lang_classifier = EncoderClassifier.from_hparams( | |
source="speechbrain/lang-id-commonlanguage_ecapa", | |
savedir="pretrained_models/lang-id-commonlanguage_ecapa" | |
) | |
# download STT model | |
model_info = { | |
"mixteco": ("https://coqui.gateway.scarf.sh/mixtec/jemeyer/v1.0.0/model.tflite", "mixtec.tflite"), | |
"chatino": ("https://coqui.gateway.scarf.sh/chatino/bozden/v1.0.0/model.tflite", "chatino.tflite"), | |
"totonaco": ("https://coqui.gateway.scarf.sh/totonac/bozden/v1.0.0/model.tflite", "totonac.tflite"), | |
"español": ("jonatasgrosman/wav2vec2-large-xlsr-53-spanish", "spanish_xlsr"), | |
"inglés": ("facebook/wav2vec2-large-robust-ft-swbd-300h", "english_xlsr"), | |
} | |
def client(audio_data: np.array, sample_rate: int, default_lang: str): | |
output_audio = _convert_audio(audio_data, sample_rate) | |
waveform, _ = torchaudio.load(output_audio) | |
out_prob, score, index, text_lab = lang_classifier.classify_batch(waveform) | |
output_audio.seek(0) | |
fin = wave.open(output_audio, 'rb') | |
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16) | |
fin.close() | |
if text_lab == 'Spanish': | |
processor, model = STT_MODELS['español'] | |
inputs = processor(waveform) | |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits | |
result = processor.decode(torch.argmax(logits, dim=-1).cpu().tolist()) | |
else: | |
ds = STT_MODELS[default_lang] | |
result = ds.stt(audio) | |
return f"{text_lab}: {result}" | |
def load_models(language): | |
if language in STT_MODELS: | |
return STT_MODELS[language] | |
model_path, file_name = model_info.get("language", ("", "")) | |
if model_path.startswith('http'): | |
if not exists(file_name): | |
print(f"Downloading {model_path}") | |
r = requests.get(model_path, allow_redirects=True) | |
with open(file_name, 'wb') as file: | |
file.write(r.content) | |
else: | |
print(f"Found {file_name}. Skipping download...") | |
return Model(file_name) | |
processor = Wav2Vec2Processor.from_pretrained(model_path) | |
model = AutoModelForCTC.from_pretrained(model_path) | |
return processor, model | |
def stt(default_lang: str, audio: Tuple[int, np.array]): | |
sample_rate, audio = audio | |
use_scorer = False | |
recognized_result = client(audio, sample_rate, default_lang) | |
return recognized_result | |
def _convert_audio(audio_data: np.array, sample_rate: int): | |
source_audio = BytesIO() | |
source_audio.write(audio_data) | |
source_audio.seek(0) | |
output_audio = BytesIO() | |
wav_file = AudioSegment.from_raw( | |
source_audio, | |
channels=1, | |
sample_width=2, | |
frame_rate=sample_rate | |
) | |
wav_file.set_frame_rate(16000).set_channels(1).export(output_audio, "wav", codec="pcm_s16le") | |
output_audio.seek(0) | |
return output_audio | |
iface = gr.Interface( | |
fn=stt, | |
inputs=[ | |
gr.inputs.Radio(choices=("chatino", "mixteco", "totonaco"), default="mixteco", label="Lengua principal"), | |
gr.inputs.Audio(type="numpy", label="Audio", optional=False), | |
], | |
outputs=gr.outputs.Textbox(label="Output"), | |
title="Coqui STT Yoloxochitl Mixtec", | |
theme="huggingface", | |
description="Prueba de dictado a texto para el mixteco de Yoloxochitl," | |
" usando [el modelo entrenado por Josh Meyer](https://coqui.ai/mixtec/jemeyer/v1.0.0/)" | |
" con [los datos recopilados por Rey Castillo y sus colaboradores](https://www.openslr.org/89)." | |
" Esta prueba es basada en la de [Ukraniano](https://huggingface.co./spaces/robinhad/ukrainian-stt)." | |
" \n\n" | |
"Speech-to-text demo for Yoloxochitl Mixtec," | |
" using [the model trained by Josh Meyer](https://coqui.ai/mixtec/jemeyer/v1.0.0/)" | |
" on [the corpus compiled by Rey Castillo and collaborators](https://www.openslr.org/89)." | |
" This demo is based on the [Ukrainian STT demo](https://huggingface.co./spaces/robinhad/ukrainian-stt).", | |
) | |
STT_MODELS = {lang: load_models(lang) for lang in ("inglés", "español")} | |
iface.launch() | |