import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread import spaces # Charge le modele model = AutoModelForCausalLM.from_pretrained( finetuned_model, device_map="auto", trust_remote_code=True, ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(finetuned_model, trust_remote_code=True, padding=True, truncation=True) class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [29, 0] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False @spaces.GPU def predict(message, history): history_transformer_format = history + [[message, ""]] stop = StopOnTokens() messages = "".join(["".join(["\n[INST]:"+item[0], "\n[/INST]:"+item[1]]) for item in history_transformer_format]) model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_message = "" start_flag = True # Flag to ignore initial newline for new_token in streamer: if start_flag and new_token == '\n': continue start_flag = False partial_message += new_token yield partial_message demo = gr.ChatInterface(predict).launch() if __name__ == "__main__": demo.launch()