Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,62 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
4 |
+
from threading import Thread
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
# Charge le modele
|
8 |
+
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
finetuned_model,
|
11 |
+
device_map="auto",
|
12 |
+
trust_remote_code=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
)
|
14 |
|
15 |
+
# Load tokenizer
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(finetuned_model,
|
17 |
+
trust_remote_code=True,
|
18 |
+
padding=True,
|
19 |
+
truncation=True)
|
20 |
+
|
21 |
+
class StopOnTokens(StoppingCriteria):
|
22 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
23 |
+
stop_ids = [29, 0]
|
24 |
+
for stop_id in stop_ids:
|
25 |
+
if input_ids[0][-1] == stop_id:
|
26 |
+
return True
|
27 |
+
return False
|
28 |
+
|
29 |
+
@spaces.GPU
|
30 |
+
def predict(message, history):
|
31 |
+
history_transformer_format = history + [[message, ""]]
|
32 |
+
stop = StopOnTokens()
|
33 |
+
|
34 |
+
messages = "".join(["".join(["\n[INST]:"+item[0], "\n[/INST]:"+item[1]]) for item in history_transformer_format])
|
35 |
+
|
36 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
37 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
38 |
+
generate_kwargs = dict(
|
39 |
+
model_inputs,
|
40 |
+
streamer=streamer,
|
41 |
+
max_new_tokens=1024,
|
42 |
+
num_beams=1,
|
43 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
44 |
+
)
|
45 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
46 |
+
t.start()
|
47 |
+
partial_message = ""
|
48 |
+
start_flag = True # Flag to ignore initial newline
|
49 |
+
|
50 |
+
for new_token in streamer:
|
51 |
+
if start_flag and new_token == '\n':
|
52 |
+
continue
|
53 |
+
start_flag = False
|
54 |
+
partial_message += new_token
|
55 |
+
yield partial_message
|
56 |
+
|
57 |
+
|
58 |
+
demo = gr.ChatInterface(predict).launch()
|
59 |
+
|
60 |
|
61 |
if __name__ == "__main__":
|
62 |
demo.launch()
|