vonewman commited on
Commit
de9b5da
1 Parent(s): 29001b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -57
app.py CHANGED
@@ -1,63 +1,62 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
4
+ from threading import Thread
5
+ import spaces
6
+
7
+ # Charge le modele
8
+
9
+ model = AutoModelForCausalLM.from_pretrained(
10
+ finetuned_model,
11
+ device_map="auto",
12
+ trust_remote_code=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  )
14
 
15
+ # Load tokenizer
16
+ tokenizer = AutoTokenizer.from_pretrained(finetuned_model,
17
+ trust_remote_code=True,
18
+ padding=True,
19
+ truncation=True)
20
+
21
+ class StopOnTokens(StoppingCriteria):
22
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
23
+ stop_ids = [29, 0]
24
+ for stop_id in stop_ids:
25
+ if input_ids[0][-1] == stop_id:
26
+ return True
27
+ return False
28
+
29
+ @spaces.GPU
30
+ def predict(message, history):
31
+ history_transformer_format = history + [[message, ""]]
32
+ stop = StopOnTokens()
33
+
34
+ messages = "".join(["".join(["\n[INST]:"+item[0], "\n[/INST]:"+item[1]]) for item in history_transformer_format])
35
+
36
+ model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
37
+ streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
38
+ generate_kwargs = dict(
39
+ model_inputs,
40
+ streamer=streamer,
41
+ max_new_tokens=1024,
42
+ num_beams=1,
43
+ stopping_criteria=StoppingCriteriaList([stop])
44
+ )
45
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
46
+ t.start()
47
+ partial_message = ""
48
+ start_flag = True # Flag to ignore initial newline
49
+
50
+ for new_token in streamer:
51
+ if start_flag and new_token == '\n':
52
+ continue
53
+ start_flag = False
54
+ partial_message += new_token
55
+ yield partial_message
56
+
57
+
58
+ demo = gr.ChatInterface(predict).launch()
59
+
60
 
61
  if __name__ == "__main__":
62
  demo.launch()