Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
import spaces | |
finetuned_model = "CONCREE/adia-llm" | |
# Charge le modele | |
model = AutoModelForCausalLM.from_pretrained( | |
finetuned_model, | |
device_map="auto", | |
trust_remote_code=True, | |
) | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(finetuned_model, | |
trust_remote_code=True, | |
padding=True, | |
truncation=True) | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def predict(message, history): | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
messages = "".join(["".join(["\n[INST]:"+item[0], "\n[/INST]:"+item[1]]) for item in history_transformer_format]) | |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
start_flag = True # Flag to ignore initial newline | |
for new_token in streamer: | |
if start_flag and new_token == '\n': | |
continue | |
start_flag = False | |
partial_message += new_token | |
yield partial_message | |
demo = gr.ChatInterface(predict).launch() | |
if __name__ == "__main__": | |
demo.launch() |