Spaces:
Runtime error
Runtime error
import spaces # Import spaces at the top | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Import the GPU decorator | |
from spaces import GPU | |
# Set the device to use GPU | |
device = "cuda" # Use CUDA for GPU | |
# Initialize model and tokenizer | |
peft_model_id = "CMLM/ZhongJing-2-1_8b" | |
base_model_id = "Qwen/Qwen1.5-1.8B-Chat" | |
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map={"cuda": 0}) | |
model.load_adapter(peft_model_id) | |
tokenizer = AutoTokenizer.from_pretrained( | |
"CMLM/ZhongJing-2-1_8b", | |
padding_side="right", | |
trust_remote_code=True, | |
pad_token='' | |
) | |
# Decorate with GPU usage and specify the duration | |
def get_model_response(question): | |
# Create the prompt without context | |
prompt = f"Question: {question}" | |
messages = [ | |
{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."}, | |
{"role": "user", "content": prompt} | |
] | |
# Prepare the input | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(device) | |
# Generate the response | |
generated_ids = model.generate( | |
model_inputs.input_ids, | |
max_new_tokens=512 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
# Decode the response | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return response | |
iface = gr.Interface( | |
fn=get_model_response, # Directly use the decorated function | |
inputs=["text"], | |
outputs="text", | |
title="仲景GPT-V2-1.8B", | |
description="博极医源,精勤不倦。Unlocking the Wisdom of Traditional Chinese Medicine with AI." | |
) | |
# Launch the interface with sharing enabled | |
iface.launch(share=True) | |