chaeeunlee commited on
Commit
5402045
·
1 Parent(s): 447928c

fixed local HF_HOME

Browse files
Files changed (47) hide show
  1. .DS_Store +0 -0
  2. app.py +3 -0
  3. hub/.locks/datasets--chaeeunlee--test_requests/28df5f900b358436f0267334b3e3e9af33f917ba.lock +0 -0
  4. hub/.locks/datasets--chaeeunlee--test_requests/32897cd3e640101ba184f8c4ccd896981de3804a.lock +0 -0
  5. hub/.locks/datasets--chaeeunlee--test_results/28df5f900b358436f0267334b3e3e9af33f917ba.lock +0 -0
  6. hub/.locks/datasets--chaeeunlee--test_results/32897cd3e640101ba184f8c4ccd896981de3804a.lock +0 -0
  7. hub/.locks/models--EleutherAI--pythia-70m/0204ed10c186a4c7c68f55dff8f26087a45898d6.lock +0 -0
  8. hub/.locks/models--EleutherAI--pythia-70m/d7a9196e329eaf06d6e2802fed376e7459834236.lock +0 -0
  9. hub/.locks/models--EleutherAI--pythia-70m/df0253c0ab197de15c12fa7fbb7edcca9b6848a3.lock +0 -0
  10. hub/.locks/models--EleutherAI--pythia-70m/f1860edb10f80bcaf7b023fce47c68a23b724c23.lock +0 -0
  11. hub/.locks/models--EleutherAI--pythia-70m/f74dfbfab8f97770a87769c739fb080c21c8bacc.lock +0 -0
  12. hub/datasets--chaeeunlee--test_requests/blobs/28df5f900b358436f0267334b3e3e9af33f917ba +55 -0
  13. hub/datasets--chaeeunlee--test_requests/blobs/32897cd3e640101ba184f8c4ccd896981de3804a +3 -0
  14. hub/datasets--chaeeunlee--test_requests/refs/main +1 -0
  15. hub/datasets--chaeeunlee--test_results/blobs/28df5f900b358436f0267334b3e3e9af33f917ba +55 -0
  16. hub/datasets--chaeeunlee--test_results/blobs/32897cd3e640101ba184f8c4ccd896981de3804a +3 -0
  17. hub/datasets--chaeeunlee--test_results/refs/main +1 -0
  18. hub/models--EleutherAI--pythia-70m/.no_exist/a39f36b100fe8a5377810d56c3f4789b9c53ac42/added_tokens.json +0 -0
  19. hub/models--EleutherAI--pythia-70m/.no_exist/a39f36b100fe8a5377810d56c3f4789b9c53ac42/merges.txt +0 -0
  20. hub/models--EleutherAI--pythia-70m/.no_exist/a39f36b100fe8a5377810d56c3f4789b9c53ac42/vocab.json +0 -0
  21. hub/models--EleutherAI--pythia-70m/blobs/0204ed10c186a4c7c68f55dff8f26087a45898d6 +5 -0
  22. hub/models--EleutherAI--pythia-70m/blobs/d7a9196e329eaf06d6e2802fed376e7459834236 +24 -0
  23. hub/models--EleutherAI--pythia-70m/blobs/df0253c0ab197de15c12fa7fbb7edcca9b6848a3 +294 -0
  24. hub/models--EleutherAI--pythia-70m/blobs/f1860edb10f80bcaf7b023fce47c68a23b724c23 +9 -0
  25. hub/models--EleutherAI--pythia-70m/blobs/f74dfbfab8f97770a87769c739fb080c21c8bacc +0 -0
  26. hub/models--EleutherAI--pythia-70m/refs/main +1 -0
  27. hub/models--EleutherAI--pythia-70m/snapshots/a39f36b100fe8a5377810d56c3f4789b9c53ac42/README.md +1 -0
  28. hub/models--EleutherAI--pythia-70m/snapshots/a39f36b100fe8a5377810d56c3f4789b9c53ac42/config.json +1 -0
  29. hub/models--EleutherAI--pythia-70m/snapshots/a39f36b100fe8a5377810d56c3f4789b9c53ac42/special_tokens_map.json +1 -0
  30. hub/models--EleutherAI--pythia-70m/snapshots/a39f36b100fe8a5377810d56c3f4789b9c53ac42/tokenizer.json +1 -0
  31. hub/models--EleutherAI--pythia-70m/snapshots/a39f36b100fe8a5377810d56c3f4789b9c53ac42/tokenizer_config.json +1 -0
  32. hub/version.txt +1 -0
  33. manage_repos.ipynb +28 -20
  34. src/.DS_Store +0 -0
  35. src/backend/.DS_Store +0 -0
  36. src/backend/envs.py +4 -2
  37. src/backend/tasks/.DS_Store +0 -0
  38. src/backend/tasks/medmcqa/.DS_Store +0 -0
  39. src/backend/tasks/medmcqa/medmcqa.yaml +18 -0
  40. src/backend/tasks/medmcqa/utils_medmcqa.py +19 -0
  41. src/backend/tasks/medqa/.DS_Store +0 -0
  42. src/backend/tasks/medqa/medqa.yaml +16 -0
  43. src/backend/tasks/medqa/preprocess_medqa.py +8 -0
  44. src/display/__pycache__/utils.cpython-310.pyc +0 -0
  45. src/display/utils.py +5 -2
  46. src/populate.py +2 -1
  47. src/submission/__pycache__/submit.cpython-310.pyc +0 -0
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py CHANGED
@@ -124,9 +124,12 @@ def filter_models(df: pd.DataFrame, type_query: list, size_query: list, precisio
124
  ui_snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30)
125
  ui_snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30)
126
 
 
 
127
 
128
  raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) # k the problem is that the results are only saved in _bk dirs.
129
  leaderboard_df = original_df.copy()
 
130
 
131
 
132
  ################################################################################################################################
 
124
  ui_snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30)
125
  ui_snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30)
126
 
127
+ print(f"COLS = {COLS}")
128
+
129
 
130
  raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) # k the problem is that the results are only saved in _bk dirs.
131
  leaderboard_df = original_df.copy()
132
+ print(f"leaderboard_df = {leaderboard_df}")
133
 
134
 
135
  ################################################################################################################################
hub/.locks/datasets--chaeeunlee--test_requests/28df5f900b358436f0267334b3e3e9af33f917ba.lock ADDED
File without changes
hub/.locks/datasets--chaeeunlee--test_requests/32897cd3e640101ba184f8c4ccd896981de3804a.lock ADDED
File without changes
hub/.locks/datasets--chaeeunlee--test_results/28df5f900b358436f0267334b3e3e9af33f917ba.lock ADDED
File without changes
hub/.locks/datasets--chaeeunlee--test_results/32897cd3e640101ba184f8c4ccd896981de3804a.lock ADDED
File without changes
hub/.locks/models--EleutherAI--pythia-70m/0204ed10c186a4c7c68f55dff8f26087a45898d6.lock ADDED
File without changes
hub/.locks/models--EleutherAI--pythia-70m/d7a9196e329eaf06d6e2802fed376e7459834236.lock ADDED
File without changes
hub/.locks/models--EleutherAI--pythia-70m/df0253c0ab197de15c12fa7fbb7edcca9b6848a3.lock ADDED
File without changes
hub/.locks/models--EleutherAI--pythia-70m/f1860edb10f80bcaf7b023fce47c68a23b724c23.lock ADDED
File without changes
hub/.locks/models--EleutherAI--pythia-70m/f74dfbfab8f97770a87769c739fb080c21c8bacc.lock ADDED
File without changes
hub/datasets--chaeeunlee--test_requests/blobs/28df5f900b358436f0267334b3e3e9af33f917ba ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # Image files - compressed
53
+ *.jpg filter=lfs diff=lfs merge=lfs -text
54
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
55
+ *.webp filter=lfs diff=lfs merge=lfs -text
hub/datasets--chaeeunlee--test_requests/blobs/32897cd3e640101ba184f8c4ccd896981de3804a ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
hub/datasets--chaeeunlee--test_requests/refs/main ADDED
@@ -0,0 +1 @@
 
 
1
+ 7d6de7e1844e0f6535382e4509843534d6f043bb
hub/datasets--chaeeunlee--test_results/blobs/28df5f900b358436f0267334b3e3e9af33f917ba ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # Image files - compressed
53
+ *.jpg filter=lfs diff=lfs merge=lfs -text
54
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
55
+ *.webp filter=lfs diff=lfs merge=lfs -text
hub/datasets--chaeeunlee--test_results/blobs/32897cd3e640101ba184f8c4ccd896981de3804a ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
hub/datasets--chaeeunlee--test_results/refs/main ADDED
@@ -0,0 +1 @@
 
 
1
+ da979ab65e0398923653d6a75c5eddd5f7c7c098
hub/models--EleutherAI--pythia-70m/.no_exist/a39f36b100fe8a5377810d56c3f4789b9c53ac42/added_tokens.json ADDED
File without changes
hub/models--EleutherAI--pythia-70m/.no_exist/a39f36b100fe8a5377810d56c3f4789b9c53ac42/merges.txt ADDED
File without changes
hub/models--EleutherAI--pythia-70m/.no_exist/a39f36b100fe8a5377810d56c3f4789b9c53ac42/vocab.json ADDED
File without changes
hub/models--EleutherAI--pythia-70m/blobs/0204ed10c186a4c7c68f55dff8f26087a45898d6 ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
hub/models--EleutherAI--pythia-70m/blobs/d7a9196e329eaf06d6e2802fed376e7459834236 ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GPTNeoXForCausalLM"
4
+ ],
5
+ "bos_token_id": 0,
6
+ "eos_token_id": 0,
7
+ "hidden_act": "gelu",
8
+ "hidden_size": 512,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 2048,
11
+ "layer_norm_eps": 1e-05,
12
+ "max_position_embeddings": 2048,
13
+ "model_type": "gpt_neox",
14
+ "num_attention_heads": 8,
15
+ "num_hidden_layers": 6,
16
+ "rotary_emb_base": 10000,
17
+ "rotary_pct": 0.25,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float16",
20
+ "transformers_version": "4.24.0",
21
+ "use_cache": true,
22
+ "use_parallel_residual": true,
23
+ "vocab_size": 50304
24
+ }
hub/models--EleutherAI--pythia-70m/blobs/df0253c0ab197de15c12fa7fbb7edcca9b6848a3 ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - pytorch
6
+ - causal-lm
7
+ - pythia
8
+ license: apache-2.0
9
+ datasets:
10
+ - EleutherAI/pile
11
+ library_name: gpt-neox
12
+ ---
13
+
14
+ The *Pythia Scaling Suite* is a collection of models developed to facilitate
15
+ interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf).
16
+ It contains two sets of eight models of sizes
17
+ 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two
18
+ models: one trained on the Pile, and one trained on the Pile after the dataset
19
+ has been globally deduplicated. All 8 model sizes are trained on the exact
20
+ same data, in the exact same order. We also provide 154 intermediate
21
+ checkpoints per model, hosted on Hugging Face as branches.
22
+
23
+ The Pythia model suite was deliberately designed to promote scientific
24
+ research on large language models, especially interpretability research.
25
+ Despite not centering downstream performance as a design goal, we find the
26
+ models <a href="#evaluations">match or exceed</a> the performance of
27
+ similar and same-sized models, such as those in the OPT and GPT-Neo suites.
28
+
29
+ <details>
30
+ <summary style="font-weight:600">Details on previous early release and naming convention.</summary>
31
+
32
+ Previously, we released an early version of the Pythia suite to the public.
33
+ However, we decided to retrain the model suite to address a few hyperparameter
34
+ discrepancies. This model card <a href="#changelog">lists the changes</a>;
35
+ see appendix B in the Pythia paper for further discussion. We found no
36
+ difference in benchmark performance between the two Pythia versions.
37
+ The old models are
38
+ [still available](https://huggingface.co/models?other=pythia_v0), but we
39
+ suggest the retrained suite if you are just starting to use Pythia.<br>
40
+ **This is the current release.**
41
+
42
+ Please note that all models in the *Pythia* suite were renamed in January
43
+ 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table
44
+ comparing the old and new names</a> is provided in this model card, together
45
+ with exact parameter counts.
46
+ </details>
47
+ <br>
48
+
49
+ # Pythia-70M
50
+
51
+ ## Model Details
52
+
53
+ - Developed by: [EleutherAI](http://eleuther.ai)
54
+ - Model type: Transformer-based Language Model
55
+ - Language: English
56
+ - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia)
57
+ for training procedure, config files, and details on how to use.
58
+ [See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation
59
+ details.
60
+ - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
61
+ - License: Apache 2.0
62
+ - Contact: to ask questions about this model, join the [EleutherAI
63
+ Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`.
64
+ Please read the existing *Pythia* documentation before asking about it in the
65
+ EleutherAI Discord. For general correspondence: [contact@eleuther.
66
+ ai](mailto:[email protected]).
67
+
68
+ <figure>
69
+
70
+ | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models |
71
+ | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: |
72
+ | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — |
73
+ | 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M |
74
+ | 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M |
75
+ | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — |
76
+ | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B |
77
+ | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B |
78
+ | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B |
79
+ | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — |
80
+ <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and
81
+ non-deduped models of a given size have the same hyperparameters. “Equivalent”
82
+ models have <b>exactly</b> the same architecture, and the same number of
83
+ non-embedding parameters.</figcaption>
84
+ </figure>
85
+
86
+ ## Uses and Limitations
87
+
88
+ ### Intended Use
89
+
90
+ The primary intended use of Pythia is research on the behavior, functionality,
91
+ and limitations of large language models. This suite is intended to provide
92
+ a controlled setting for performing scientific experiments. We also provide
93
+ 154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints
94
+ `step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to
95
+ `step143000`. These checkpoints are hosted on Hugging Face as branches. Note
96
+ that branch `143000` corresponds exactly to the model checkpoint on the `main`
97
+ branch of each model.
98
+
99
+ You may also further fine-tune and adapt Pythia-70M for deployment,
100
+ as long as your use is in accordance with the Apache 2.0 license. Pythia
101
+ models work with the Hugging Face [Transformers
102
+ Library](https://huggingface.co/docs/transformers/index). If you decide to use
103
+ pre-trained Pythia-70M as a basis for your fine-tuned model, please
104
+ conduct your own risk and bias assessment.
105
+
106
+ ### Out-of-scope use
107
+
108
+ The Pythia Suite is **not** intended for deployment. It is not a in itself
109
+ a product and cannot be used for human-facing interactions. For example,
110
+ the model may generate harmful or offensive text. Please evaluate the risks
111
+ associated with your particular use case.
112
+
113
+ Pythia models are English-language only, and are not suitable for translation
114
+ or generating text in other languages.
115
+
116
+ Pythia-70M has not been fine-tuned for downstream contexts in which
117
+ language models are commonly deployed, such as writing genre prose,
118
+ or commercial chatbots. This means Pythia-70M will **not**
119
+ respond to a given prompt the way a product like ChatGPT does. This is because,
120
+ unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement
121
+ Learning from Human Feedback (RLHF) to better “follow” human instructions.
122
+
123
+ ### Limitations and biases
124
+
125
+ The core functionality of a large language model is to take a string of text
126
+ and predict the next token. The token used by the model need not produce the
127
+ most “accurate” text. Never rely on Pythia-70M to produce factually accurate
128
+ output.
129
+
130
+ This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset
131
+ known to contain profanity and texts that are lewd or otherwise offensive.
132
+ See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a
133
+ discussion of documented biases with regards to gender, religion, and race.
134
+ Pythia-70M may produce socially unacceptable or undesirable text, *even if*
135
+ the prompt itself does not include anything explicitly offensive.
136
+
137
+ If you plan on using text generated through, for example, the Hosted Inference
138
+ API, we recommend having a human curate the outputs of this language model
139
+ before presenting it to other people. Please inform your audience that the
140
+ text was generated by Pythia-70M.
141
+
142
+ ### Quickstart
143
+
144
+ Pythia models can be loaded and used via the following code, demonstrated here
145
+ for the third `pythia-70m-deduped` checkpoint:
146
+
147
+ ```python
148
+ from transformers import GPTNeoXForCausalLM, AutoTokenizer
149
+
150
+ model = GPTNeoXForCausalLM.from_pretrained(
151
+ "EleutherAI/pythia-70m-deduped",
152
+ revision="step3000",
153
+ cache_dir="./pythia-70m-deduped/step3000",
154
+ )
155
+
156
+ tokenizer = AutoTokenizer.from_pretrained(
157
+ "EleutherAI/pythia-70m-deduped",
158
+ revision="step3000",
159
+ cache_dir="./pythia-70m-deduped/step3000",
160
+ )
161
+
162
+ inputs = tokenizer("Hello, I am", return_tensors="pt")
163
+ tokens = model.generate(**inputs)
164
+ tokenizer.decode(tokens[0])
165
+ ```
166
+
167
+ Revision/branch `step143000` corresponds exactly to the model checkpoint on
168
+ the `main` branch of each model.<br>
169
+ For more information on how to use all Pythia models, see [documentation on
170
+ GitHub](https://github.com/EleutherAI/pythia).
171
+
172
+ ## Training
173
+
174
+ ### Training data
175
+
176
+ [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in
177
+ English. It was created by EleutherAI specifically for training large language
178
+ models. It contains texts from 22 diverse sources, roughly broken down into
179
+ five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl),
180
+ prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and
181
+ miscellaneous (e.g. GitHub, Enron Emails). See [the Pile
182
+ paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources,
183
+ methodology, and a discussion of ethical implications. Consult [the
184
+ datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation
185
+ about the Pile and its component datasets. The Pile can be downloaded from
186
+ the [official website](https://pile.eleuther.ai/), or from a [community
187
+ mirror](https://the-eye.eu/public/AI/pile/).<br>
188
+ The Pile was **not** deduplicated before being used to train Pythia-70M.
189
+
190
+ ### Training procedure
191
+
192
+ All models were trained on the exact same data, in the exact same order. Each
193
+ model saw 299,892,736,000 tokens during training, and 143 checkpoints for each
194
+ model are saved every 2,097,152,000 tokens, spaced evenly throughout training,
195
+ from `step1000` to `step143000` (which is the same as `main`). In addition, we
196
+ also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`.
197
+ This corresponds to training for just under 1 epoch on the Pile for
198
+ non-deduplicated models, and about 1.5 epochs on the deduplicated Pile.
199
+
200
+ All *Pythia* models trained for 143000 steps at a batch size
201
+ of 2M (2,097,152 tokens).<br>
202
+ See [GitHub](https://github.com/EleutherAI/pythia) for more details on training
203
+ procedure, including [how to reproduce
204
+ it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br>
205
+ Pythia uses the same tokenizer as [GPT-NeoX-
206
+ 20B](https://huggingface.co/EleutherAI/gpt-neox-20b).
207
+
208
+ ## Evaluations
209
+
210
+ All 16 *Pythia* models were evaluated using the [LM Evaluation
211
+ Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access
212
+ the results by model and step at `results/json/*` in the [GitHub
213
+ repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br>
214
+ Expand the sections below to see plots of evaluation results for all
215
+ Pythia and Pythia-deduped models compared with OPT and BLOOM.
216
+
217
+ <details>
218
+ <summary>LAMBADA – OpenAI</summary>
219
+ <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/>
220
+ </details>
221
+
222
+ <details>
223
+ <summary>Physical Interaction: Question Answering (PIQA)</summary>
224
+ <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/>
225
+ </details>
226
+
227
+ <details>
228
+ <summary>WinoGrande</summary>
229
+ <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/>
230
+ </details>
231
+
232
+ <details>
233
+ <summary>AI2 Reasoning Challenge—Easy Set</summary>
234
+ <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/>
235
+ </details>
236
+
237
+ <details>
238
+ <summary>SciQ</summary>
239
+ <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/>
240
+ </details>
241
+
242
+ ## Changelog
243
+
244
+ This section compares differences between previously released
245
+ [Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current
246
+ models. See Appendix B of the Pythia paper for further discussion of these
247
+ changes and the motivation behind them. We found that retraining Pythia had no
248
+ impact on benchmark performance.
249
+
250
+ - All model sizes are now trained with uniform batch size of 2M tokens.
251
+ Previously, the models of size 160M, 410M, and 1.4B parameters were trained
252
+ with batch sizes of 4M tokens.
253
+ - We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64,
254
+ 128,256,512} in addition to every 1000 training steps.
255
+ - Flash Attention was used in the new retrained suite.
256
+ - We remedied a minor inconsistency that existed in the original suite: all
257
+ models of size 2.8B parameters or smaller had a learning rate (LR) schedule
258
+ which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and
259
+ 12B models all used an LR schedule which decayed to a minimum LR of 0. In
260
+ the redone training runs, we rectified this inconsistency: all models now were
261
+ trained with LR decaying to a minimum of 0.1× their maximum LR.
262
+
263
+ ### Naming convention and parameter count
264
+
265
+ *Pythia* models were renamed in January 2023. It is possible that the old
266
+ naming convention still persists in some documentation by accident. The
267
+ current naming convention (70M, 160M, etc.) is based on total parameter count.
268
+
269
+ <figure style="width:32em">
270
+
271
+ | current Pythia suffix | old suffix | total params | non-embedding params |
272
+ | --------------------: | ---------: | -------------: | -------------------: |
273
+ | 70M | 19M | 70,426,624 | 18,915,328 |
274
+ | 160M | 125M | 162,322,944 | 85,056,000 |
275
+ | 410M | 350M | 405,334,016 | 302,311,424 |
276
+ | 1B | 800M | 1,011,781,632 | 805,736,448 |
277
+ | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 |
278
+ | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 |
279
+ | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 |
280
+ | 12B | 13B | 11,846,072,320 | 11,327,027,200 |
281
+ </figure>
282
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
283
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_EleutherAI__pythia-70m)
284
+
285
+ | Metric | Value |
286
+ |-----------------------|---------------------------|
287
+ | Avg. | 25.28 |
288
+ | ARC (25-shot) | 21.59 |
289
+ | HellaSwag (10-shot) | 27.29 |
290
+ | MMLU (5-shot) | 25.9 |
291
+ | TruthfulQA (0-shot) | 47.06 |
292
+ | Winogrande (5-shot) | 51.46 |
293
+ | GSM8K (5-shot) | 0.3 |
294
+ | DROP (3-shot) | 3.33 |
hub/models--EleutherAI--pythia-70m/blobs/f1860edb10f80bcaf7b023fce47c68a23b724c23 ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "eos_token": "<|endoftext|>",
5
+ "name_or_path": "EleutherAI/gpt-neox-20b",
6
+ "special_tokens_map_file": "/admin/home-hailey/.cache/huggingface/hub/models--EleutherAI--gpt-neox-20b/snapshots/4e49eadb5d14bd22f314ec3f45b69a87b88c7691/special_tokens_map.json",
7
+ "tokenizer_class": "GPTNeoXTokenizer",
8
+ "unk_token": "<|endoftext|>"
9
+ }
hub/models--EleutherAI--pythia-70m/blobs/f74dfbfab8f97770a87769c739fb080c21c8bacc ADDED
The diff for this file is too large to render. See raw diff
 
hub/models--EleutherAI--pythia-70m/refs/main ADDED
@@ -0,0 +1 @@
 
 
1
+ a39f36b100fe8a5377810d56c3f4789b9c53ac42
hub/models--EleutherAI--pythia-70m/snapshots/a39f36b100fe8a5377810d56c3f4789b9c53ac42/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ ../../blobs/df0253c0ab197de15c12fa7fbb7edcca9b6848a3
hub/models--EleutherAI--pythia-70m/snapshots/a39f36b100fe8a5377810d56c3f4789b9c53ac42/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ../../blobs/d7a9196e329eaf06d6e2802fed376e7459834236
hub/models--EleutherAI--pythia-70m/snapshots/a39f36b100fe8a5377810d56c3f4789b9c53ac42/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ../../blobs/0204ed10c186a4c7c68f55dff8f26087a45898d6
hub/models--EleutherAI--pythia-70m/snapshots/a39f36b100fe8a5377810d56c3f4789b9c53ac42/tokenizer.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ../../blobs/f74dfbfab8f97770a87769c739fb080c21c8bacc
hub/models--EleutherAI--pythia-70m/snapshots/a39f36b100fe8a5377810d56c3f4789b9c53ac42/tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ../../blobs/f1860edb10f80bcaf7b023fce47c68a23b724c23
hub/version.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 1
manage_repos.ipynb CHANGED
@@ -11,31 +11,16 @@
11
  },
12
  {
13
  "cell_type": "code",
14
- "execution_count": 1,
15
  "metadata": {},
16
  "outputs": [
17
- {
18
- "name": "stdout",
19
- "output_type": "stream",
20
- "text": [
21
- "CACHE_PATH = /Users/chaeeunlee/Documents/VSC_workspaces/test_leaderboard\n"
22
- ]
23
- },
24
- {
25
- "name": "stderr",
26
- "output_type": "stream",
27
- "text": [
28
- "/Users/chaeeunlee/anaconda3/envs/lb/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
29
- " from .autonotebook import tqdm as notebook_tqdm\n"
30
- ]
31
- },
32
  {
33
  "data": {
34
  "text/plain": [
35
  "'\\n( path_in_repo: str\\nrepo_id: str\\ntoken: typing.Optional[str] = None\\nrepo_type: typing.Optional[str] = Nonerevision: typing.Optional[str] = Nonecommit_message: typing.Optional[str] = Nonecommit_description: typing.Optional[str] = Nonecreate_pr: typing.Optional[bool] = Noneparent_commit: typing.Optional[str] = None )\\n'"
36
  ]
37
  },
38
- "execution_count": 1,
39
  "metadata": {},
40
  "output_type": "execute_result"
41
  }
@@ -69,14 +54,37 @@
69
  "metadata": {},
70
  "outputs": [],
71
  "source": [
72
- "res = API.delete_folder(path_in_repo='EleutherAI/pythia-70m/', repo_id=RESULTS_REPO, repo_type='dataset')"
73
  ]
74
  },
75
  {
76
  "cell_type": "code",
77
- "execution_count": 2,
78
  "metadata": {},
79
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  "source": [
81
  "# res = API.delete_folder(path_in_repo='EleutherAI/', repo_id=QUEUE_REPO, repo_type='dataset')\n",
82
  "\n",
 
11
  },
12
  {
13
  "cell_type": "code",
14
+ "execution_count": 6,
15
  "metadata": {},
16
  "outputs": [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  {
18
  "data": {
19
  "text/plain": [
20
  "'\\n( path_in_repo: str\\nrepo_id: str\\ntoken: typing.Optional[str] = None\\nrepo_type: typing.Optional[str] = Nonerevision: typing.Optional[str] = Nonecommit_message: typing.Optional[str] = Nonecommit_description: typing.Optional[str] = Nonecreate_pr: typing.Optional[bool] = Noneparent_commit: typing.Optional[str] = None )\\n'"
21
  ]
22
  },
23
+ "execution_count": 6,
24
  "metadata": {},
25
  "output_type": "execute_result"
26
  }
 
54
  "metadata": {},
55
  "outputs": [],
56
  "source": [
57
+ "res = API.delete_folder(path_in_repo='EleutherAI/', repo_id=RESULTS_REPO, repo_type='dataset')"
58
  ]
59
  },
60
  {
61
  "cell_type": "code",
62
+ "execution_count": 5,
63
  "metadata": {},
64
+ "outputs": [
65
+ {
66
+ "ename": "EntryNotFoundError",
67
+ "evalue": "404 Client Error. (Request ID: Root=1-65c41aaf-4be744ec4d8b25f96aac8d20;c17f9346-8c9c-44c6-af2a-d69065e58148)\n\nEntry Not Found for url: https://huggingface.co/api/datasets/chaeeunlee/test_requests/commit/main.\nA file with the name \"EleutherAI/pythia-70m_pubmedqa_eval_request_False_float32_Original.json\" does not exist",
68
+ "output_type": "error",
69
+ "traceback": [
70
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
71
+ "\u001b[0;31mHTTPError\u001b[0m Traceback (most recent call last)",
72
+ "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py:286\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[0;34m(response, endpoint_name)\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 286\u001b[0m \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 287\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPError \u001b[38;5;28;01mas\u001b[39;00m e:\n",
73
+ "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/requests/models.py:1021\u001b[0m, in \u001b[0;36mResponse.raise_for_status\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1020\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m http_error_msg:\n\u001b[0;32m-> 1021\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m HTTPError(http_error_msg, response\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m)\n",
74
+ "\u001b[0;31mHTTPError\u001b[0m: 404 Client Error: Not Found for url: https://huggingface.co/api/datasets/chaeeunlee/test_requests/commit/main",
75
+ "\nThe above exception was the direct cause of the following exception:\n",
76
+ "\u001b[0;31mEntryNotFoundError\u001b[0m Traceback (most recent call last)",
77
+ "Cell \u001b[0;32mIn[5], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# res = API.delete_folder(path_in_repo='EleutherAI/', repo_id=QUEUE_REPO, repo_type='dataset')\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mAPI\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete_file\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath_in_repo\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mEleutherAI/pythia-70m_pubmedqa_eval_request_False_float32_Original.json\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mQUEUE_REPO\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mdataset\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
78
+ "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 116\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
79
+ "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/hf_api.py:4704\u001b[0m, in \u001b[0;36mHfApi.delete_file\u001b[0;34m(self, path_in_repo, repo_id, token, repo_type, revision, commit_message, commit_description, create_pr, parent_commit)\u001b[0m\n\u001b[1;32m 4698\u001b[0m commit_message \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 4699\u001b[0m commit_message \u001b[38;5;28;01mif\u001b[39;00m commit_message \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDelete \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpath_in_repo\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m with huggingface_hub\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 4700\u001b[0m )\n\u001b[1;32m 4702\u001b[0m operations \u001b[38;5;241m=\u001b[39m [CommitOperationDelete(path_in_repo\u001b[38;5;241m=\u001b[39mpath_in_repo)]\n\u001b[0;32m-> 4704\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_commit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 4705\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4706\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4707\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4708\u001b[0m \u001b[43m \u001b[49m\u001b[43moperations\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moperations\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4709\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4710\u001b[0m \u001b[43m \u001b[49m\u001b[43mcommit_message\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_message\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4711\u001b[0m \u001b[43m \u001b[49m\u001b[43mcommit_description\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_description\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4712\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_pr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcreate_pr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4713\u001b[0m \u001b[43m \u001b[49m\u001b[43mparent_commit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparent_commit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4714\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
80
+ "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 116\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
81
+ "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/hf_api.py:1208\u001b[0m, in \u001b[0;36mfuture_compatible.<locals>._inner\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1205\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrun_as_future(fn, \u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 1207\u001b[0m \u001b[38;5;66;03m# Otherwise, call the function normally\u001b[39;00m\n\u001b[0;32m-> 1208\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
82
+ "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/hf_api.py:3600\u001b[0m, in \u001b[0;36mHfApi.create_commit\u001b[0;34m(self, repo_id, operations, commit_message, commit_description, token, repo_type, revision, create_pr, num_threads, parent_commit, run_as_future)\u001b[0m\n\u001b[1;32m 3598\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 3599\u001b[0m commit_resp \u001b[38;5;241m=\u001b[39m get_session()\u001b[38;5;241m.\u001b[39mpost(url\u001b[38;5;241m=\u001b[39mcommit_url, headers\u001b[38;5;241m=\u001b[39mheaders, data\u001b[38;5;241m=\u001b[39mdata, params\u001b[38;5;241m=\u001b[39mparams)\n\u001b[0;32m-> 3600\u001b[0m \u001b[43mhf_raise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcommit_resp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mendpoint_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcommit\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3601\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m RepositoryNotFoundError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 3602\u001b[0m e\u001b[38;5;241m.\u001b[39mappend_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE)\n",
83
+ "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py:296\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[0;34m(response, endpoint_name)\u001b[0m\n\u001b[1;32m 294\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m error_code \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEntryNotFound\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 295\u001b[0m message \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39mstatus_code\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m Client Error.\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEntry Not Found for url: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39murl\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 296\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m EntryNotFoundError(message, response) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m 298\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m error_code \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mGatedRepo\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 299\u001b[0m message \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 300\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39mstatus_code\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m Client Error.\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot access gated repo for url \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39murl\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 301\u001b[0m )\n",
84
+ "\u001b[0;31mEntryNotFoundError\u001b[0m: 404 Client Error. (Request ID: Root=1-65c41aaf-4be744ec4d8b25f96aac8d20;c17f9346-8c9c-44c6-af2a-d69065e58148)\n\nEntry Not Found for url: https://huggingface.co/api/datasets/chaeeunlee/test_requests/commit/main.\nA file with the name \"EleutherAI/pythia-70m_pubmedqa_eval_request_False_float32_Original.json\" does not exist"
85
+ ]
86
+ }
87
+ ],
88
  "source": [
89
  "# res = API.delete_folder(path_in_repo='EleutherAI/', repo_id=QUEUE_REPO, repo_type='dataset')\n",
90
  "\n",
src/.DS_Store CHANGED
Binary files a/src/.DS_Store and b/src/.DS_Store differ
 
src/backend/.DS_Store ADDED
Binary file (6.15 kB). View file
 
src/backend/envs.py CHANGED
@@ -19,8 +19,10 @@ class Task:
19
  # how are these differentiated with Tasks in display/utils.py ?
20
  class Tasks(Enum):
21
  task0 = Task("pubmedqa", "acc", "PubMedQA", 0) # 64, as in the ATLAS paper
22
- task1 = Task("hellaswag", "acc_norm", "HellaSwag", 0) # 64, as in the ATLAS paper
23
- # task2 = Task("medqa")
 
 
24
 
25
 
26
  num_fewshots = {
 
19
  # how are these differentiated with Tasks in display/utils.py ?
20
  class Tasks(Enum):
21
  task0 = Task("pubmedqa", "acc", "PubMedQA", 0) # 64, as in the ATLAS paper
22
+ # task1 = Task("hellaswag", "acc_norm", "HellaSwag", 0) # 64, as in the ATLAS paper
23
+ task1 = Task("medqa", "acc_norm", "MedQA", 0) # medqa_4options?
24
+ task2 = Task("medmcqa", "acc_norm", "MedMCQA", 0)
25
+
26
 
27
 
28
  num_fewshots = {
src/backend/tasks/.DS_Store ADDED
Binary file (6.15 kB). View file
 
src/backend/tasks/medmcqa/.DS_Store ADDED
Binary file (6.15 kB). View file
 
src/backend/tasks/medmcqa/medmcqa.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: medmcqa
2
+ dataset_path: medmcqa
3
+ output_type: multiple_choice
4
+ training_split: train
5
+ validation_split: validation
6
+ test_split: validation
7
+ doc_to_text: !function utils_medmcqa.doc_to_text
8
+ doc_to_target: cop
9
+ doc_to_choice: [ 'A','B','C','D' ]
10
+ should_decontaminate: true
11
+ doc_to_decontamination_query: "{{question}}"
12
+ metric_list:
13
+ - metric: acc
14
+ aggregation: mean
15
+ higher_is_better: true
16
+ - metric: acc_norm
17
+ aggregation: mean
18
+ higher_is_better: true
src/backend/tasks/medmcqa/utils_medmcqa.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from Master
2
+ def doc_to_text(doc) -> str:
3
+ """
4
+ Question: <question>
5
+ Choices:
6
+ A. <choice1>
7
+ B. <choice2>
8
+ C. <choice3>
9
+ D. <choice4>
10
+ Answer:
11
+ """
12
+ choices = [doc["opa"], doc["opb"], doc["opc"], doc["opd"]]
13
+ option_choices = {'A': choices[0], 'B': choices[1], 'C': choices[2], 'D': choices[3]}
14
+
15
+ prompt = "Question: " + doc["question"] + "\nChoices:\n"
16
+ for choice, option in option_choices.items():
17
+ prompt += f"{choice.upper()}. {option}\n"
18
+ prompt += "Answer:"
19
+ return prompt
src/backend/tasks/medqa/.DS_Store ADDED
Binary file (6.15 kB). View file
 
src/backend/tasks/medqa/medqa.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: medqa_4options
2
+ dataset_path: GBaker/MedQA-USMLE-4-options-hf
3
+ output_type: multiple_choice
4
+ training_split: train
5
+ validation_split: validation
6
+ test_split: test
7
+ doc_to_text: !function preprocess_medqa.doc_to_text
8
+ doc_to_target: !function preprocess_medqa.doc_to_target
9
+ doc_to_choice: [ 'A', 'B', 'C', 'D' ]
10
+ metric_list:
11
+ - metric: acc
12
+ aggregation: mean
13
+ higher_is_better: true
14
+ - metric: acc_norm
15
+ aggregation: mean
16
+ higher_is_better: true
src/backend/tasks/medqa/preprocess_medqa.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ def doc_to_text(doc) -> str:
2
+ option_choices = {'A': doc["ending0"], 'B': doc["ending1"], 'C': doc["ending2"], 'D': doc["ending3"]}
3
+ answers = "".join((f"{k}. {v}\n") for k, v in option_choices.items())
4
+ return f"Question: {doc['sent1']}\n{answers}Answer:"
5
+
6
+
7
+ def doc_to_target(doc) -> int:
8
+ return doc["label"]
src/display/__pycache__/utils.cpython-310.pyc CHANGED
Binary files a/src/display/__pycache__/utils.cpython-310.pyc and b/src/display/__pycache__/utils.cpython-310.pyc differ
 
src/display/utils.py CHANGED
@@ -17,7 +17,10 @@ class Task:
17
 
18
  class Tasks(Enum):
19
  # arc = Task("arc:challenge", "acc_norm", "ARC")
20
- hellaswag = Task("hellaswag", "acc_norm", "HellaSwag")
 
 
 
21
  # mmlu = Task("hendrycksTest", "acc", "MMLU")
22
  # truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA")
23
  # winogrande = Task("winogrande", "acc", "Winogrande")
@@ -45,7 +48,7 @@ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "ma
45
  #Scores
46
  auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg", "number", True)])
47
  for task in Tasks:
48
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
49
  # Model information
50
  auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
51
  auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
 
17
 
18
  class Tasks(Enum):
19
  # arc = Task("arc:challenge", "acc_norm", "ARC")
20
+ # hellaswag = Task("hellaswag", "acc_norm", "HellaSwag")
21
+
22
+ medqa = Task("medqa", "acc_norm", "MedQA") # medqa_4options?
23
+ medmcqa = Task("medmcqa", "acc_norm", "MedMCQA")
24
  # mmlu = Task("hendrycksTest", "acc", "MMLU")
25
  # truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA")
26
  # winogrande = Task("winogrande", "acc", "Winogrande")
 
48
  #Scores
49
  auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg", "number", True)])
50
  for task in Tasks:
51
+ auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", False)]) # hidden was true by default
52
  # Model information
53
  auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
54
  auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
src/populate.py CHANGED
@@ -15,13 +15,14 @@ and cleaning the data based on specific criteria. Let's break down the function
15
 
16
  '''
17
 
 
18
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> tuple[list[EvalResult], pd.DataFrame]:
19
 
20
  print(f"results_path = {results_path}")
21
 
22
  raw_data = get_raw_eval_results(results_path, requests_path)
23
 
24
- print(f"@@@@@@@@@@@@@@@@@@@@@@@@raw_data = {raw_data}")
25
 
26
  all_data_json = [v.to_dict() for v in raw_data] # if v.is_complete()]
27
  # all_data_json.append(baseline_row)
 
15
 
16
  '''
17
 
18
+ ## TO-DO: if raw_data is [], return dummy df with correct columns so that the UI shows the right columns
19
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> tuple[list[EvalResult], pd.DataFrame]:
20
 
21
  print(f"results_path = {results_path}")
22
 
23
  raw_data = get_raw_eval_results(results_path, requests_path)
24
 
25
+ # print(f"@@raw_data = {raw_data}")
26
 
27
  all_data_json = [v.to_dict() for v in raw_data] # if v.is_complete()]
28
  # all_data_json.append(baseline_row)
src/submission/__pycache__/submit.cpython-310.pyc CHANGED
Binary files a/src/submission/__pycache__/submit.cpython-310.pyc and b/src/submission/__pycache__/submit.cpython-310.pyc differ