from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import mdtex2html
import torch
"""Override Chatbot.postprocess"""
model_path = 'THUDM/BPO'
device = 'cuda:0'
if torch.cuda.is_available():
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, add_prefix_space=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map=device, load_in_8bit=True)
model = model.eval()
DESCRIPTION = """This Space demonstrates model [BPO](https://huggingface.co./THUDM/BPO), which is built on LLaMA-2-7b-chat.
BPO aims to improve the alignment of LLMs with human preferences by optimizing user prompts.
Feel free to play with it, or duplicate to run generations without a queue! 🔎 For more details about the BPO model, take a look [at our paper](https://arxiv.org/pdf/2311.04155.pdf).
"""
LICENSE = """
---
As BPO is a fine-tuned version of [Llama-2-7b-chat](https://huggingface.co./meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co./spaces/CCCCCC/BPO_demo/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co./spaces/CCCCCC/BPO_demo/blob/main/USE_POLICY.md).
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
"
prompt_template = "[INST] You are an expert prompt engineer. Please help me improve this prompt to get a more helpful and harmless response:\n{} [/INST]"
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f''
else:
lines[i] = f'
'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "
"+line
text = "".join(lines)
return text
def predict(input, chatbot, max_length, top_p, temperature, history):
if input.strip() == "":
chatbot = [(parse_text(input), parse_text("Please input a valid user prompt. Empty string is not supported."))]
return chatbot, history
prompt = prompt_template.format(input)
model_inputs = tokenizer(prompt, return_tensors="pt").to(device)
output = model.generate(**model_inputs, max_length=max_length, do_sample=True, top_p=top_p,
temperature=temperature, num_beams=1)
resp = tokenizer.decode(output[0], skip_special_tokens=True).split('[/INST]')[1].strip()
optimized_prompt = """Here are several optimized prompts:
====================Stable Optimization====================
"""
optimized_prompt += resp
chatbot = [(parse_text(input), parse_text(optimized_prompt))]
yield chatbot, history
optimized_prompt += "\n\n====================Aggressive Optimization===================="
texts = [input] * 5
responses = []
num = 0
for text in texts:
num += 1
seed = torch.seed()
torch.manual_seed(seed)
prompt = prompt_template.format(text)
min_length = len(tokenizer(prompt)['input_ids']) + len(tokenizer(text)['input_ids']) + 5
model_inputs = tokenizer(prompt, return_tensors="pt").to(device)
bad_words_ids = [tokenizer(bad_word, add_special_tokens=False).input_ids for bad_word in ["[PROTECT]", "\n\n[PROTECT]", "[KEEP", "[INSTRUCTION]"]]
# eos and \n
eos_token_ids = [tokenizer.eos_token_id, 13]
output = model.generate(**model_inputs, max_new_tokens=1024, do_sample=True, top_p=0.9, temperature=0.9, bad_words_ids=bad_words_ids, num_beams=1, eos_token_id=eos_token_ids, min_length=min_length)
resp = tokenizer.decode(output[0], skip_special_tokens=True).split('[/INST]')[1].split('[KE')[0].split('[INS')[0].split('[PRO')[0].strip()
optimized_prompt += f"\n{num}. {resp}"
chatbot = [(parse_text(input), parse_text(optimized_prompt))]
yield chatbot, history
# return chatbot, history
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], []
def update_textbox_from_dropdown(selected_example):
return selected_example
with gr.Blocks(css="sty.css") as demo:
gr.HTML("""Prompt Preference Optimizer
""")
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chatbot = gr.Chatbot(label="Prompt Optimization Chatbot")
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
dropdown = gr.Dropdown(["tell me about harry potter", "give me 3 tips to learn English", "write a story about love"], label="Choose an example input")
user_input = gr.Textbox(show_label=False, placeholder="User Prompt...", lines=5).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.9, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
gr.Markdown(LICENSE)
dropdown.change(update_textbox_from_dropdown, dropdown, user_input)
history = gr.State([])
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(share=False, inbrowser=True)