Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
import statsmodels.formula.api as smf | |
import statsmodels.api as sm | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
from scipy.optimize import minimize | |
import plotly.express as px | |
from scipy.stats import t | |
import gradio as gr | |
class RSM_BoxBehnken: | |
# ... (Tu c贸digo de la clase RSM_BoxBehnken se mantiene igual) ... | |
# Crear un DataFrame a partir de la tabla | |
data = pd.DataFrame({ | |
'Exp.': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], | |
'Glucosa': [-1, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0], | |
'Extracto de Levadura': [-1, -1, 1, 1, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0], | |
'Tript贸fano': [0, 0, 0, 0, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0], | |
'AIA (ppm)': [166.594, 177.557, 127.261, 147.573, 188.883, 224.527, 190.238, 226.483, 195.550, 149.493, 187.683, 148.621, 278.951, 297.238, 280.896] | |
}) | |
# Crear una instancia de la clase RSM_BoxBehnken | |
rsm = RSM_BoxBehnken(data) | |
# --- Funciones para la interfaz de Gradio --- | |
def fit_full_model(): | |
rsm.fit_model() | |
return "Modelo completo ajustado. Revisa la consola para ver el resumen." | |
def fit_simplified_model(): | |
rsm.fit_simplified_model() | |
return "Modelo simplificado ajustado. Revisa la consola para ver el resumen." | |
def optimize_model(method): | |
rsm.optimize(method) | |
return (f"Optimizaci贸n realizada con {method}. Revisa la consola para ver los niveles 贸ptimos.\n" | |
f"Niveles 贸ptimos (codificados): {rsm.optimal_levels}\n" | |
f"Valor m谩ximo de {rsm.y_name}: {-rsm.optimized_results.fun:.4f}") | |
def generate_plot(fixed_variable, fixed_level_natural): | |
fig = rsm.plot_rsm_individual(fixed_variable, fixed_level_natural) | |
if fig is not None: | |
return fig | |
else: | |
return "Ajusta el modelo simplificado primero." | |
# --- Creaci贸n de la interfaz de Gradio --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# An谩lisis de Superficie de Respuesta (RSM) - Dise帽o Box-Behnken") | |
with gr.Tab("Ajuste de Modelos"): | |
with gr.Row(): | |
full_model_button = gr.Button("Ajustar Modelo Completo") | |
simplified_model_button = gr.Button("Ajustar Modelo Simplificado") | |
model_output = gr.Textbox(label="Resultado del Ajuste") | |
full_model_button.click(fn=fit_full_model, outputs=model_output) | |
simplified_model_button.click(fn=fit_simplified_model, outputs=model_output) | |
with gr.Tab("Optimizaci贸n"): | |
method_dropdown = gr.Dropdown( | |
choices=['Nelder-Mead', 'Powell', 'BFGS'], | |
value='Nelder-Mead', | |
label="M茅todo de Optimizaci贸n" | |
) | |
optimize_button = gr.Button("Optimizar") | |
optimization_output = gr.Textbox(label="Resultado de la Optimizaci贸n") | |
optimize_button.click(fn=optimize_model, inputs=method_dropdown, outputs=optimization_output) | |
with gr.Tab("Gr谩ficos de Superficie de Respuesta"): | |
with gr.Row(): | |
fixed_variable_dropdown = gr.Dropdown( | |
choices=[rsm.x1_name, rsm.x2_name, rsm.x3_name], | |
value=rsm.x1_name, | |
label="Variable Fija" | |
) | |
fixed_level_slider = gr.Slider( | |
minimum=min(rsm.get_levels(rsm.x1_name)), | |
maximum=max(rsm.get_levels(rsm.x1_name)), | |
step=0.01, | |
value=rsm.get_levels(rsm.x1_name)[1], | |
label="Nivel de Variable Fija (Natural)" | |
) | |
plot_button = gr.Button("Generar Gr谩fico") | |
plot_output = gr.Plot(label="Gr谩fico RSM") | |
def update_slider_range(fixed_variable): | |
levels = rsm.get_levels(fixed_variable) | |
return gr.Slider.update(minimum=min(levels), maximum=max(levels), value=levels[1]) | |
fixed_variable_dropdown.change( | |
fn=update_slider_range, | |
inputs=fixed_variable_dropdown, | |
outputs=fixed_level_slider | |
) | |
plot_button.click( | |
fn=generate_plot, | |
inputs=[fixed_variable_dropdown, fixed_level_slider], | |
outputs=plot_output | |
) | |
demo.launch() |