BulatF's picture
Upload app.py
80af2a1
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
from fuzzywuzzy import fuzz
from sklearn.feature_extraction.text import TfidfVectorizer
import torch.nn.functional as F
import torch
import io
import base64
from stqdm import stqdm
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
import matplotlib.pyplot as plt
import numpy as np
stopwords_list = stopwords.words('english') + ['your_additional_stopwords_here']
# Define the model and tokenizer
model_name = 'nlptown/bert-base-multilingual-uncased-sentiment'
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
st.set_page_config(layout="wide")
# Import the new model and tokenizer
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
BATCH_SIZE = 20
#defs
def classify_reviews(reviews):
probabilities = []
for i in range(0, len(reviews), BATCH_SIZE):
inputs = tokenizer(reviews[i:i+BATCH_SIZE], return_tensors='pt', truncation=True, padding=True, max_length=512)
outputs = model(**inputs)
probabilities.extend(F.softmax(outputs.logits, dim=1).tolist())
return probabilities
def top_rating(scores):
return scores.index(max(scores)) + 1
def top_prob(scores):
return max(scores)
def get_table_download_link(df):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
return f'<a href="data:file/csv;base64,{b64}" download="data.csv">Download csv file</a>'
def filter_dataframe(df, review_column, filter_words):
# Return full DataFrame if filter_words is empty or contains only spaces
if not filter_words or all(word.isspace() for word in filter_words):
return df
filter_scores = df[review_column].apply(lambda x: max([fuzz.token_set_ratio(x, word) for word in filter_words]))
return df[filter_scores > 70] # Adjust this threshold as necessary
def process_filter_words(filter_words_input):
filter_words = [word.strip() for word in filter_words_input.split(',')]
return filter_words
# Function for classifying with the new model
def classify_with_new_classes(reviews, class_names):
class_scores = []
for i in range(0, len(reviews), BATCH_SIZE):
batch_reviews = reviews[i:i+BATCH_SIZE]
for review in batch_reviews:
result = classifier(review, class_names)
scores_dict = dict(zip(result['labels'], result['scores']))
# Reorder scores to match the original class_names order
scores = [scores_dict[name] for name in class_names]
class_scores.append(scores)
return class_scores
def main():
st.title('Sentiment Analysis')
st.markdown('Upload an Excel file to get sentiment analytics')
file = st.file_uploader("Upload an excel file", type=['xlsx'])
review_column = None
df = None
class_names = None # New variable for class names
if file is not None:
try:
df = pd.read_excel(file)
# Drop rows where all columns are NaN
df = df.dropna(how='all')
# Replace blank spaces with NaN, then drop rows where all columns are NaN again
df = df.replace(r'^\s*$', np.nan, regex=True)
df = df.dropna(how='all')
review_column = st.selectbox('Select the column from your excel file containing text', df.columns)
df[review_column] = df[review_column].astype(str)
filter_words_input = st.text_input('Enter words to filter the data by, separated by comma (or leave empty)') # New input field for filter words
filter_words = [] if filter_words_input.strip() == "" else process_filter_words(filter_words_input) # Process the filter words
class_names = st.text_input('Enter the possible class names separated by comma') # New input field for class names
df = filter_dataframe(df, review_column, filter_words) # Filter the DataFrame
except Exception as e:
st.write("An error occurred while reading the uploaded file. Please make sure it's a valid Excel file.")
return
start_button = st.button('Start Analysis')
if start_button and df is not None:
# Drop rows with NaN or blank values in the review_column
df = df[df[review_column].notna()]
df = df[df[review_column].str.strip() != '']
class_names = [name.strip() for name in class_names.split(',')] # Split class names into a list
for name in class_names: # Add a new column for each class name
if name not in df.columns:
df[name] = 0.0
if review_column in df.columns:
with st.spinner('Performing sentiment analysis...'):
df, df_display = process_reviews(df, review_column, class_names)
display_ratings(df, review_column) # updated this line
display_dataframe(df, df_display)
else:
st.write(f'No column named "{review_column}" found in the uploaded file.')
def process_reviews(df, review_column, class_names):
with st.spinner('Classifying reviews...'):
progress_bar = st.progress(0)
total_reviews = len(df[review_column].tolist())
review_counter = 0
raw_scores = classify_reviews(df[review_column].tolist())
for i in range(0, len(raw_scores), BATCH_SIZE):
review_counter += min(BATCH_SIZE, len(raw_scores) - i) # Avoids overshooting the total reviews count
progress = min(review_counter / total_reviews, 1) # Ensures progress does not exceed 1
progress_bar.progress(progress)
with st.spinner('Generating classes...'):
class_scores = classify_with_new_classes(df[review_column].tolist(), class_names)
class_scores_dict = {} # New dictionary to store class scores
for i, name in enumerate(class_names):
df[name] = [score[i] for score in class_scores]
class_scores_dict[name] = [score[i] for score in class_scores]
# Add a new column with the class that has the highest score
if class_names and not all(name.isspace() for name in class_names):
df['Highest Class'] = df[class_names].idxmax(axis=1)
df_new = df.copy()
df_new['raw_scores'] = raw_scores
scores_to_df(df_new)
df_display = scores_to_percent(df_new.copy())
# Get all columns excluding the created ones and the review_column
remaining_columns = [col for col in df.columns if col not in [review_column, 'raw_scores', 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star', 'Highest Class'] + class_names]
# Reorder the dataframe with selected columns first, created columns next, then the remaining columns
df_new = df_new[[review_column, 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star'] + class_names + ['Highest Class'] + remaining_columns]
# Reorder df_display as well
df_display = df_display[[review_column, 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star'] + class_names + ['Highest Class'] + remaining_columns]
return df_new, df_display
def scores_to_df(df):
for i in range(1, 6):
df[f'{i} Star'] = df['raw_scores'].apply(lambda scores: scores[i-1]).round(2)
df['Rating'] = df['raw_scores'].apply(top_rating)
df['Probability'] = df['raw_scores'].apply(top_prob).round(2)
# Compute the Weighted Rating
df['Weighted Rating'] = sum(df[f'{i} Star']*i for i in range(1, 6))
df.drop(columns=['raw_scores'], inplace=True)
def scores_to_percent(df):
for i in range(1, 6):
df[f'{i} Star'] = df[f'{i} Star'].apply(lambda x: f'{x*100:.0f}%')
df['Probability'] = df['Probability'].apply(lambda x: f'{x*100:.0f}%')
return df
def convert_df_to_csv(df):
return df.to_csv(index=False).encode('utf-8')
def display_dataframe(df, df_display):
csv = convert_df_to_csv(df)
col1, col2, col3, col4, col5, col6, col7, col8, col9 = st.columns(9)
with col1:
st.download_button(
"Download CSV",
csv,
"data.csv",
"text/csv",
key='download-csv'
)
st.dataframe(df_display)
def important_words(reviews, num_words=5):
if len(reviews) == 0:
return []
vectorizer = TfidfVectorizer(stop_words=stopwords_list, max_features=10000)
vectors = vectorizer.fit_transform(reviews)
features = vectorizer.get_feature_names_out()
indices = np.argsort(vectorizer.idf_)[::-1]
top_features = [features[i] for i in indices[:num_words]]
return top_features
def display_ratings(df, review_column):
cols = st.columns(5)
for i in range(1, 6):
rating_reviews = df[df['Rating'] == i][review_column]
top_words = important_words(rating_reviews)
rating_counts = rating_reviews.shape[0]
cols[i-1].markdown(f"### {rating_counts}")
cols[i-1].markdown(f"{'⭐' * i}")
# Display the most important words for each rating
cols[i-1].markdown(f"#### Most Important Words:")
if top_words:
for word in top_words:
cols[i-1].markdown(f"**{word}**")
else:
cols[i-1].markdown("No important words to display")
if __name__ == "__main__":
main()