Broomva commited on
Commit
7590ece
·
1 Parent(s): 6641a19

innitial commit

Browse files
.chainlit/.langchain.db ADDED
Binary file (12.3 kB). View file
 
.chainlit/config.toml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [project]
2
+ # If true (default), the app will be available to anonymous users.
3
+ # If false, users will need to authenticate and be part of the project to use the app.
4
+ public = true
5
+
6
+ # The project ID (found on https://cloud.chainlit.io).
7
+ # The project ID is required when public is set to false or when using the cloud database.
8
+ #id = ""
9
+
10
+ # Uncomment if you want to persist the chats.
11
+ # local will create a database in your .chainlit directory (requires node.js installed).
12
+ # cloud will use the Chainlit cloud database.
13
+ # custom will load use your custom client.
14
+ #database = "local"
15
+
16
+ # Whether to enable telemetry (default: true). No personal data is collected.
17
+ enable_telemetry = false
18
+
19
+ # List of environment variables to be provided by each user to use the app.
20
+ user_env = []
21
+
22
+ # Duration (in seconds) during which the session is saved when the connection is lost
23
+ session_timeout = 3600
24
+
25
+ [UI]
26
+ # Name of the app and chatbot.
27
+ name = "Broomva Book Chat"
28
+
29
+ # Description of the app and chatbot. This is used for HTML tags.
30
+ # description = ""
31
+
32
+ # The default value for the expand messages settings.
33
+ default_expand_messages = false
34
+
35
+ # Hide the chain of thought details from the user in the UI.
36
+ hide_cot = false
37
+
38
+ # Link to your github repo. This will add a github button in the UI's header.
39
+ # github = ""
40
+
41
+ [meta]
42
+ generated_by = "0.6.2"
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.faiss filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .env
Dockerfile.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+ RUN useradd -m -u 1000 user
3
+ USER user
4
+ ENV HOME=/home/user \
5
+ PATH=/home/user/.local/bin:$PATH
6
+ WORKDIR $HOME/app
7
+ COPY --chown=user . $HOME/app
8
+ COPY ./requirements.txt ~/app/requirements.txt
9
+ RUN pip install -r requirements.txt
10
+ COPY . .
11
+ CMD ["chainlit", "run", "app.py", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import chainlit as cl
4
+ from langchain.chains import RetrievalQAWithSourcesChain
5
+ from langchain.chat_models import ChatOpenAI
6
+ from langchain.embeddings.openai import OpenAIEmbeddings
7
+ from langchain.prompts.chat import (AIMessagePromptTemplate,
8
+ ChatPromptTemplate,
9
+ HumanMessagePromptTemplate)
10
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
11
+ from langchain.vectorstores import FAISS
12
+
13
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
14
+ embeddings = OpenAIEmbeddings()
15
+
16
+ @cl.on_chat_start
17
+ async def init():
18
+ vector_store = FAISS.load_local("docs.faiss", embeddings)
19
+
20
+ chain = RetrievalQAWithSourcesChain.from_chain_type(
21
+ ChatOpenAI(temperature=0, streaming=True, model="gpt-4-1106-preview"),
22
+ chain_type="stuff",
23
+ retriever=vector_store.as_retriever(search_kwargs={"k": 7}),
24
+ )
25
+
26
+ cl.user_session.set("chain", chain)
27
+
28
+
29
+ @cl.on_message
30
+ async def main(message):
31
+ chain = cl.user_session.get("chain") # type: RetrievalQAWithSourcesChain
32
+ cb = cl.AsyncLangchainCallbackHandler(
33
+ stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
34
+ )
35
+ cb.answer_reached = True
36
+
37
+ res = await chain.acall(message.content, callbacks=[cb])
38
+
39
+ if cb.has_streamed_final_answer:
40
+ await cb.final_stream.update()
41
+ else:
42
+ answer = res["answer"]
43
+ await cl.Message(
44
+ content=answer,
45
+ ).send()
chainlit.md ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # Welcome to the Broomva Book Chat
2
+
index_creation.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %%
2
+ from langchain.document_loaders import DirectoryLoader, TextLoader
3
+ from langchain.embeddings import OpenAIEmbeddings
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.vectorstores import FAISS
6
+
7
+ # %%
8
+ loader = DirectoryLoader(
9
+ "../../../docs", glob="./*.md", loader_cls=TextLoader, recursive=True
10
+ )
11
+
12
+ documents = loader.load()
13
+ # %%
14
+
15
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
16
+ texts = text_splitter.split_documents(documents)
17
+
18
+ # %%
19
+ embedding = OpenAIEmbeddings()
20
+
21
+ vectordb = FAISS.from_documents(documents=texts, embedding=embedding)
22
+
23
+ # %%
24
+ vectordb.save_local("docs.faiss")
25
+
26
+ # %%
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ langchain
2
+ chainlit
3
+ openai
4
+ faiss-cpu
5
+ chromadb
6
+ tiktoken
7
+ pymupdf