Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset, Features, Value, Audio, Dataset
|
3 |
from huggingface_hub import HfApi, create_repo
|
4 |
-
import
|
5 |
-
|
6 |
-
# --- Configuration --- (Moved inside functions where needed, for Gradio)
|
7 |
-
animal_keywords = [
|
8 |
-
"dog", "cat", "bird", "fish", "horse", "cow", "sheep", "pig", "chicken",
|
9 |
-
"duck", "goat", "lion", "tiger", "bear", "elephant", "monkey", "zebra",
|
10 |
-
"giraffe", "rhino", "hippo", "crocodile", "snake", "frog", "turtle",
|
11 |
-
"lizard", "spider", "ant", "bee", "butterfly", "wolf", "fox", "deer",
|
12 |
-
"rabbit", "squirrel", "mouse", "rat", "hamster", "guinea pig", "parrot",
|
13 |
-
"owl", "eagle", "hawk", "penguin", "dolphin", "whale", "shark", "seal",
|
14 |
-
"octopus", "crab", "lobster", "shrimp", "snail", "worm", "kangaroo", "koala",
|
15 |
-
"panda", "sloth", "hedgehog", "raccoon", "skunk", "beaver", "otter",
|
16 |
-
"platypus", "jaguar", "leopard", "cheetah", "puma", "ostrich", "emu",
|
17 |
-
"flamingo", "peacock", "swan", "goose", "turkey", "pigeon", "seagull", "antelope",
|
18 |
-
"bison", "buffalo", "camel", "llama", "alpaca", "donkey", "mule", "ferret",
|
19 |
-
"mongoose", "meerkat", "wombat", "dingo", "armadillo", "badger", "chipmunk", "porcupine"
|
20 |
-
]
|
21 |
-
|
22 |
-
|
23 |
-
def filter_and_push(dataset_name, split_name, keywords_text, new_dataset_repo_id, hf_token):
|
24 |
-
"""Filters a dataset based on keywords and pushes it to the Hub."""
|
25 |
|
26 |
-
if not hf_token:
|
27 |
-
return "Error: Hugging Face token is required. Please provide it.", None
|
28 |
|
|
|
|
|
29 |
try:
|
30 |
# --- 1. Load the dataset in streaming mode ---
|
31 |
dataset = load_dataset(dataset_name, split=split_name, streaming=True)
|
32 |
|
33 |
# --- 2. Filter the dataset (streaming) ---
|
34 |
-
# Process keywords: split the comma-separated string, strip whitespace
|
35 |
keywords = [keyword.strip().lower() for keyword in keywords_text.split(',') if keyword.strip()]
|
36 |
if not keywords:
|
37 |
-
|
38 |
-
# return "Error: No keywords provided. Please enter at least one keyword.", None
|
39 |
|
40 |
filtered_dataset = dataset.filter(
|
41 |
lambda example: any(keyword in example["prompt"].lower() for keyword in keywords)
|
@@ -43,48 +21,79 @@ def filter_and_push(dataset_name, split_name, keywords_text, new_dataset_repo_id
|
|
43 |
|
44 |
# --- 3. Select Indices (Efficiently) ---
|
45 |
matching_indices = []
|
|
|
46 |
for i, example in enumerate(filtered_dataset):
|
47 |
matching_indices.append(i)
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
if not matching_indices:
|
51 |
-
return "No matching examples found
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
# ---
|
54 |
full_dataset = load_dataset(dataset_name, split=split_name, streaming=False)
|
55 |
-
|
|
|
|
|
56 |
|
57 |
# --- 5. Define features (for consistent schema) ---
|
58 |
features = Features({
|
59 |
'prompt': Value(dtype='string', id=None),
|
60 |
-
'audio': Audio(sampling_rate=16000),
|
61 |
'strategy': Value(dtype='string', id=None),
|
62 |
'seed': Value(dtype='int64', id=None)
|
63 |
})
|
64 |
|
65 |
try:
|
66 |
-
|
67 |
except Exception as e:
|
68 |
-
|
69 |
|
70 |
-
# --- 6. Upload the Subset Dataset ---
|
71 |
-
api = HfApi(token=hf_token)
|
72 |
|
73 |
-
#
|
|
|
74 |
try:
|
75 |
create_repo(new_dataset_repo_id, token=hf_token, repo_type="dataset")
|
76 |
print(f"Repository '{new_dataset_repo_id}' created.")
|
77 |
except Exception as e:
|
78 |
-
|
79 |
return f"Error creating repository: {e}", None
|
80 |
|
81 |
-
|
82 |
-
subset_dataset.push_to_hub(new_dataset_repo_id)
|
83 |
dataset_url = f"https://huggingface.co/datasets/{new_dataset_repo_id}"
|
84 |
-
return f"Subset dataset uploaded successfully!
|
85 |
|
86 |
except Exception as e:
|
87 |
-
return f"An error occurred: {e}", None
|
88 |
|
89 |
|
90 |
# --- Gradio Interface ---
|
@@ -92,26 +101,44 @@ with gr.Blocks() as demo:
|
|
92 |
gr.Markdown("# Dataset Filter and Push")
|
93 |
|
94 |
with gr.Row():
|
95 |
-
dataset_name_input = gr.Textbox(label="Source Dataset Name
|
96 |
-
split_name_input = gr.Textbox(label="Split Name
|
97 |
|
98 |
-
keywords_input = gr.Textbox(label="Keywords (comma-separated
|
99 |
|
100 |
-
|
101 |
-
new_dataset_repo_id_input = gr.Textbox(label="New Dataset Repo ID (e.g., your_username/your_dataset)")
|
102 |
-
hf_token_input = gr.Textbox(label="Hugging Face Token", type="password")
|
103 |
|
104 |
-
|
|
|
|
|
105 |
|
106 |
with gr.Row():
|
107 |
-
|
108 |
-
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
115 |
)
|
116 |
|
117 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset, Features, Value, Audio, Dataset
|
3 |
from huggingface_hub import HfApi, create_repo
|
4 |
+
import pandas as pd # Import pandas for displaying the dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
6 |
|
7 |
+
def filter_dataset(dataset_name, split_name, keywords_text):
|
8 |
+
"""Filters a dataset based on keywords and returns a Pandas DataFrame."""
|
9 |
try:
|
10 |
# --- 1. Load the dataset in streaming mode ---
|
11 |
dataset = load_dataset(dataset_name, split=split_name, streaming=True)
|
12 |
|
13 |
# --- 2. Filter the dataset (streaming) ---
|
|
|
14 |
keywords = [keyword.strip().lower() for keyword in keywords_text.split(',') if keyword.strip()]
|
15 |
if not keywords:
|
16 |
+
return pd.DataFrame(), "Error: No keywords provided."
|
|
|
17 |
|
18 |
filtered_dataset = dataset.filter(
|
19 |
lambda example: any(keyword in example["prompt"].lower() for keyword in keywords)
|
|
|
21 |
|
22 |
# --- 3. Select Indices (Efficiently) ---
|
23 |
matching_indices = []
|
24 |
+
data_for_df = [] # Store data for DataFrame
|
25 |
for i, example in enumerate(filtered_dataset):
|
26 |
matching_indices.append(i)
|
27 |
+
# Extract data and append. Crucially, *decode* audio here.
|
28 |
+
example_data = {
|
29 |
+
'prompt': example['prompt'],
|
30 |
+
'strategy': example['strategy'],
|
31 |
+
'seed': example['seed'],
|
32 |
+
'audio': example['audio']['array'] # Get the NumPy array
|
33 |
+
}
|
34 |
+
data_for_df.append(example_data)
|
35 |
|
36 |
if not matching_indices:
|
37 |
+
return pd.DataFrame(), "No matching examples found."
|
38 |
+
|
39 |
+
# --- 4. Create Pandas DataFrame ---
|
40 |
+
df = pd.DataFrame(data_for_df)
|
41 |
+
return df, f"Found {len(matching_indices)} matching examples."
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
return pd.DataFrame(), f"An error occurred: {e}"
|
45 |
+
|
46 |
+
|
47 |
+
def push_to_hub(df_json, dataset_name, split_name, new_dataset_repo_id, hf_token):
|
48 |
+
"""Pushes a Pandas DataFrame (from JSON) to the Hugging Face Hub."""
|
49 |
+
if not hf_token:
|
50 |
+
return "Error: Hugging Face token is required.", None
|
51 |
+
|
52 |
+
try:
|
53 |
+
# Convert JSON back to DataFrame
|
54 |
+
df = pd.read_json(df_json)
|
55 |
+
|
56 |
+
if df.empty:
|
57 |
+
return "Error: Cannot push an empty dataset",None
|
58 |
+
|
59 |
+
# Convert DataFrame to Hugging Face Dataset
|
60 |
+
dataset = Dataset.from_pandas(df)
|
61 |
|
62 |
+
# --- Load original (for feature definition)
|
63 |
full_dataset = load_dataset(dataset_name, split=split_name, streaming=False)
|
64 |
+
|
65 |
+
if len(full_dataset) == 0:
|
66 |
+
return "Error: Source Dataset Appears Empty",None
|
67 |
|
68 |
# --- 5. Define features (for consistent schema) ---
|
69 |
features = Features({
|
70 |
'prompt': Value(dtype='string', id=None),
|
71 |
+
'audio': Audio(sampling_rate=16000),
|
72 |
'strategy': Value(dtype='string', id=None),
|
73 |
'seed': Value(dtype='int64', id=None)
|
74 |
})
|
75 |
|
76 |
try:
|
77 |
+
dataset = dataset.cast(features)
|
78 |
except Exception as e:
|
79 |
+
return f"An error occurred: {e}",None
|
80 |
|
|
|
|
|
81 |
|
82 |
+
# --- 6. Upload to the Hugging Face Hub ---
|
83 |
+
api = HfApi(token=hf_token)
|
84 |
try:
|
85 |
create_repo(new_dataset_repo_id, token=hf_token, repo_type="dataset")
|
86 |
print(f"Repository '{new_dataset_repo_id}' created.")
|
87 |
except Exception as e:
|
88 |
+
if "Repo already exists" not in str(e):
|
89 |
return f"Error creating repository: {e}", None
|
90 |
|
91 |
+
dataset.push_to_hub(new_dataset_repo_id)
|
|
|
92 |
dataset_url = f"https://huggingface.co/datasets/{new_dataset_repo_id}"
|
93 |
+
return f"Subset dataset uploaded successfully!", dataset_url
|
94 |
|
95 |
except Exception as e:
|
96 |
+
return f"An error occurred during push: {e}", None
|
97 |
|
98 |
|
99 |
# --- Gradio Interface ---
|
|
|
101 |
gr.Markdown("# Dataset Filter and Push")
|
102 |
|
103 |
with gr.Row():
|
104 |
+
dataset_name_input = gr.Textbox(label="Source Dataset Name", value="declare-lab/audio-alpaca")
|
105 |
+
split_name_input = gr.Textbox(label="Split Name", value="train")
|
106 |
|
107 |
+
keywords_input = gr.Textbox(label="Keywords (comma-separated)", value="dog, cat")
|
108 |
|
109 |
+
filter_button = gr.Button("Filter Dataset")
|
|
|
|
|
110 |
|
111 |
+
# Display the filtered data. 'label' is important for presentation.
|
112 |
+
filtered_data_output = gr.Dataframe(label="Filtered Data")
|
113 |
+
filter_status_output = gr.Textbox(label="Filter Status")
|
114 |
|
115 |
with gr.Row():
|
116 |
+
new_dataset_repo_id_input = gr.Textbox(label="New Dataset Repo ID")
|
117 |
+
hf_token_input = gr.Textbox(label="Hugging Face Token", type="password")
|
118 |
|
119 |
+
push_button = gr.Button("Push to Hub")
|
120 |
+
push_status_output = gr.Textbox(label="Push Status")
|
121 |
+
dataset_url_output = gr.Textbox(label="Dataset URL") # Display the dataset URL
|
122 |
+
|
123 |
+
# Hidden component to store the filtered dataset (as JSON)
|
124 |
+
filtered_data_json = gr.JSON(visible=False)
|
125 |
+
|
126 |
+
# Connect the filter button
|
127 |
+
filter_button.click(
|
128 |
+
filter_dataset,
|
129 |
+
inputs=[dataset_name_input, split_name_input, keywords_input],
|
130 |
+
outputs=[filtered_data_output, filter_status_output]
|
131 |
+
).then( # Use .then() to chain actions
|
132 |
+
lambda df: df.to_json(), # Convert DataFrame to JSON
|
133 |
+
inputs=[filtered_data_output],
|
134 |
+
outputs=[filtered_data_json] # Store in the hidden JSON component
|
135 |
+
)
|
136 |
|
137 |
+
# Connect the push button
|
138 |
+
push_button.click(
|
139 |
+
push_to_hub,
|
140 |
+
inputs=[filtered_data_json, dataset_name_input, split_name_input, new_dataset_repo_id_input, hf_token_input],
|
141 |
+
outputs=[push_status_output, dataset_url_output]
|
142 |
)
|
143 |
|
144 |
if __name__ == "__main__":
|