# Code adapted from https://huggingface.co./kaiokendev/superhot-13b-8k-no-rlhf-test/blob/main/llama_rope_scaled_monkey_patch.py from functools import partial import torch import transformers import transformers.models.llama.modeling_llama class CondenseRotaryEmbedding(torch.nn.Module): def __init__( self, dim, ratio, max_position_embeddings=2048, base=10000, device=None ): super().__init__() inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) self.register_buffer("inv_freq", inv_freq) # Build here to make `torch.jit.trace` work. self.ratio = ratio max_position_embeddings *= ratio self.max_seq_len_cached = max_position_embeddings # print(f"Monkey Patching condense ratio {ratio}") t = ( torch.arange( self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype, ) / ratio ) freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) dtype = torch.get_default_dtype() self.register_buffer( "cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False ) self.register_buffer( "sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False ) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. if seq_len > self.max_seq_len_cached: self.max_seq_len_cached = seq_len t = ( torch.arange( self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype ) / self.ratio ) freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self.register_buffer( "cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False ) self.register_buffer( "sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False ) return ( self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), ) def replace_llama_with_condense(ratio): transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = partial( CondenseRotaryEmbedding, ratio=ratio )