Spaces:
Running
Running
import gc | |
from threading import Thread | |
import torch | |
from transformers import TextIteratorStreamer | |
def generate_stream_xft( | |
model, | |
tokenizer, | |
params, | |
device, | |
context_len=8192, | |
stream_interval=2, | |
judge_sent_end=False, | |
): | |
prompt = params["prompt"] | |
repetition_penalty = float(params.get("repetition_penalty", 1.0)) | |
# unused now, and placehold for future. | |
# temperature = float(params.get("temperature", 1.0)) | |
# top_p = float(params.get("top_p", 1.0)) | |
max_new_tokens = int(params.get("max_new_tokens", 4096)) | |
echo = params.get("echo", True) | |
inputs = tokenizer( | |
prompt, return_tensors="pt", padding=model.config.padding | |
).input_ids | |
input_echo_len = len(inputs[0]) | |
max_len = max_new_tokens + input_echo_len | |
decode_config = dict(skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, **decode_config) | |
generation_kwargs = { | |
"input_ids": inputs, | |
"streamer": streamer, | |
"max_length": max_len, | |
"num_beams": model.config.beam_width, | |
"length_penalty": repetition_penalty, | |
"num_return_sequences": model.config.num_return_sequences, | |
"early_stopping": model.config.early_stopping, | |
"eos_token_id": model.config.eos_token_id, | |
"pad_token_id": model.config.pad_token_id, | |
} | |
thread = Thread(target=model.model.generate, kwargs=generation_kwargs) | |
thread.start() | |
if echo: | |
# means keep the prompt | |
output = prompt | |
else: | |
output = "" | |
i = 0 | |
for i, new_text in enumerate(streamer): | |
output += new_text | |
yield { | |
"text": output, | |
"usage": { | |
"prompt_tokens": input_echo_len, | |
"completion_tokens": i, | |
"total_tokens": input_echo_len + i, | |
}, | |
"finish_reason": None, | |
} | |
output = output.strip() | |
if i == max_new_tokens - 1: | |
finish_reason = "length" | |
else: | |
finish_reason = "stop" | |
yield { | |
"text": output, | |
"usage": { | |
"prompt_tokens": input_echo_len, | |
"completion_tokens": i, | |
"total_tokens": input_echo_len + i, | |
}, | |
"finish_reason": finish_reason, | |
} | |
gc.collect() | |