Spaces:
Running
Running
import gc | |
from threading import Thread | |
from typing import Iterable | |
import torch | |
import transformers | |
from transformers import TextIteratorStreamer, GenerationConfig | |
from src.utils import is_partial_stop | |
def generate_stream_falcon( | |
model, | |
tokenizer, | |
params, | |
device, | |
context_len=2048, | |
stream_interval=2, | |
judge_sent_end=False, | |
): | |
prompt = params["prompt"] | |
len_prompt = len(prompt) | |
temperature = float(params.get("temperature", 1.0)) | |
repetition_penalty = float(params.get("repetition_penalty", 1.0)) | |
top_p = float(params.get("top_p", 1.0)) | |
top_k = int(params.get("top_k", 50)) # -1 means disable | |
max_new_tokens = int(params.get("max_new_tokens", 256)) | |
stop_str = params.get("stop", None) | |
echo = bool(params.get("echo", True)) | |
stop_token_ids = params.get("stop_token_ids", None) or [] | |
stop_token_ids.append(tokenizer.eos_token_id) | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
input_ids = inputs["input_ids"] | |
attention_mask = inputs["attention_mask"] | |
max_src_len = context_len - max_new_tokens - 8 | |
input_ids = input_ids[-max_src_len:] # truncate from the left | |
attention_mask = attention_mask[-max_src_len:] # truncate from the left | |
input_echo_len = len(input_ids) | |
decode_config = dict(skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, **decode_config) | |
generation_config = GenerationConfig( | |
max_new_tokens=max_new_tokens, | |
do_sample=temperature >= 1e-5, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=10, | |
top_p=top_p, | |
top_k=top_k, | |
eos_token_id=stop_token_ids, | |
) | |
generation_kwargs = dict( | |
inputs=input_ids, | |
attention_mask=attention_mask, | |
streamer=streamer, | |
generation_config=generation_config, | |
) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
if echo: | |
# means keep the prompt | |
output = prompt | |
else: | |
output = "" | |
for i, new_text in enumerate(streamer): | |
output += new_text | |
if i % stream_interval == 0: | |
if echo: | |
rfind_start = len_prompt | |
else: | |
rfind_start = 0 | |
partially_stopped = False | |
if stop_str: | |
if isinstance(stop_str, str): | |
pos = output.rfind(stop_str, rfind_start) | |
if pos != -1: | |
output = output[:pos] | |
else: | |
partially_stopped = is_partial_stop(output, stop_str) | |
elif isinstance(stop_str, Iterable): | |
for each_stop in stop_str: | |
pos = output.rfind(each_stop, rfind_start) | |
if pos != -1: | |
output = output[:pos] | |
break | |
else: | |
partially_stopped = is_partial_stop(output, each_stop) | |
if partially_stopped: | |
break | |
else: | |
raise ValueError("Invalid stop field type.") | |
# prevent yielding partial stop sequence | |
if not partially_stopped: | |
yield { | |
"text": output, | |
"usage": { | |
"prompt_tokens": input_echo_len, | |
"completion_tokens": i, | |
"total_tokens": input_echo_len + i, | |
}, | |
"finish_reason": None, | |
} | |
output = output.strip() | |
# finish stream event, which contains finish reason | |
if i == max_new_tokens - 1: | |
finish_reason = "length" | |
elif partially_stopped: | |
finish_reason = None | |
else: | |
finish_reason = "stop" | |
yield { | |
"text": output, | |
"usage": { | |
"prompt_tokens": input_echo_len, | |
"completion_tokens": i, | |
"total_tokens": input_echo_len + i, | |
}, | |
"finish_reason": finish_reason, | |
} | |
# clean | |
gc.collect() | |
torch.cuda.empty_cache() | |
if device == "xpu": | |
torch.xpu.empty_cache() | |
if device == "npu": | |
torch.npu.empty_cache() | |