Spaces:
Running
Running
# Code adapted from https://huggingface.co./kaiokendev/superhot-13b-8k-no-rlhf-test/blob/main/llama_rope_scaled_monkey_patch.py | |
from functools import partial | |
import torch | |
import transformers | |
import transformers.models.llama.modeling_llama | |
class CondenseRotaryEmbedding(torch.nn.Module): | |
def __init__( | |
self, dim, ratio, max_position_embeddings=2048, base=10000, device=None | |
): | |
super().__init__() | |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
# Build here to make `torch.jit.trace` work. | |
self.ratio = ratio | |
max_position_embeddings *= ratio | |
self.max_seq_len_cached = max_position_embeddings | |
# print(f"Monkey Patching condense ratio {ratio}") | |
t = ( | |
torch.arange( | |
self.max_seq_len_cached, | |
device=self.inv_freq.device, | |
dtype=self.inv_freq.dtype, | |
) | |
/ ratio | |
) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
dtype = torch.get_default_dtype() | |
self.register_buffer( | |
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False | |
) | |
self.register_buffer( | |
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False | |
) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. | |
if seq_len > self.max_seq_len_cached: | |
self.max_seq_len_cached = seq_len | |
t = ( | |
torch.arange( | |
self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype | |
) | |
/ self.ratio | |
) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | |
self.register_buffer( | |
"cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False | |
) | |
self.register_buffer( | |
"sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False | |
) | |
return ( | |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
) | |
def replace_llama_with_condense(ratio): | |
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = partial( | |
CondenseRotaryEmbedding, ratio=ratio | |
) | |