Spaces:
Running
Running
File size: 35,041 Bytes
6dc0c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 |
"""
Live monitor of the website statistics and leaderboard.
Dependency:
sudo apt install pkg-config libicu-dev
pip install pytz gradio gdown plotly polyglot pyicu pycld2 tabulate
"""
import argparse
import ast
import json
import pickle
import os
import threading
import time
import pandas as pd
import gradio as gr
import numpy as np
from fastchat.serve.monitor.basic_stats import report_basic_stats, get_log_files
from fastchat.serve.monitor.clean_battle_data import clean_battle_data
from fastchat.serve.monitor.elo_analysis import report_elo_analysis_results
from fastchat.utils import build_logger, get_window_url_params_js
notebook_url = (
"https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH"
)
basic_component_values = [None] * 6
leader_component_values = [None] * 5
def make_default_md_1(arena_df, elo_results, mirror=False):
link_color = "#1976D2" # This color should be clear in both light and dark mode
leaderboard_md = f"""
# 🏆 LMSYS Chatbot Arena Leaderboard
<a href='https://lmsys.org/blog/2023-05-03-arena/' style='color: {link_color}; text-decoration: none;'>Blog</a> |
<a href='https://arxiv.org/abs/2403.04132' style='color: {link_color}; text-decoration: none;'>Paper</a> |
<a href='https://github.com/lm-sys/FastChat' style='color: {link_color}; text-decoration: none;'>GitHub</a> |
<a href='https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md' style='color: {link_color}; text-decoration: none;'>Dataset</a> |
<a href='https://twitter.com/lmsysorg' style='color: {link_color}; text-decoration: none;'>Twitter</a> |
<a href='https://discord.gg/HSWAKCrnFx' style='color: {link_color}; text-decoration: none;'>Discord</a>
"""
return leaderboard_md
def make_default_md_2(arena_df, elo_results, mirror=False):
mirror_str = "<span style='color: red; font-weight: bold'>This is a mirror of the live leaderboard created and maintained by the <a href='https://lmsys.org' style='color: red; text-decoration: none;'>LMSYS Organization</a>. Please link to <a href='https://leaderboard.lmsys.org' style='color: #B00020; text-decoration: none;'>leaderboard.lmsys.org</a> for citation purposes.</span>"
leaderboard_md = f"""
{mirror_str if mirror else ""}
LMSYS Chatbot Arena is a crowdsourced open platform for LLM evals. We've collected over 800,000 human pairwise comparisons to rank LLMs with the Bradley-Terry model and display the model ratings in Elo-scale.
You can find more details in our paper. **Chatbot arena is dependent on community participation, please contribute by casting your vote!**
"""
return leaderboard_md
def make_arena_leaderboard_md(arena_df, last_updated_time):
total_votes = sum(arena_df["num_battles"]) // 2
total_models = len(arena_df)
space = " "
leaderboard_md = f"""
Total #models: **{total_models}**.{space} Total #votes: **{"{:,}".format(total_votes)}**.{space} Last updated: {last_updated_time}.
📣 **NEW!** View leaderboard for different categories (e.g., coding, long user query)! This is still in preview and subject to change.
Code to recreate leaderboard tables and plots in this [notebook]({notebook_url}). You can contribute your vote at [chat.lmsys.org](https://chat.lmsys.org)!
***Rank (UB)**: model's ranking (upper-bound), defined by one + the number of models that are statistically better than the target model.
Model A is statistically better than model B when A's lower-bound score is greater than B's upper-bound score (in 95% confidence interval).
See Figure 1 below for visualization of the confidence intervals of model scores.
"""
return leaderboard_md
def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
total_votes = sum(arena_df["num_battles"]) // 2
total_models = len(arena_df)
space = " "
total_subset_votes = sum(arena_subset_df["num_battles"]) // 2
total_subset_models = len(arena_subset_df)
leaderboard_md = f"""### {cat_name_to_explanation[name]}
#### {space} #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**{space}
"""
return leaderboard_md
def make_full_leaderboard_md(elo_results):
leaderboard_md = """
Three benchmarks are displayed: **Arena Elo**, **MT-Bench** and **MMLU**.
- [Chatbot Arena](https://chat.lmsys.org/?arena) - a crowdsourced, randomized battle platform. We use 500K+ user votes to compute model strength.
- [MT-Bench](https://arxiv.org/abs/2306.05685): a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
- [MMLU](https://arxiv.org/abs/2009.03300) (5-shot): a test to measure a model's multitask accuracy on 57 tasks.
💻 Code: The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge).
The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval).
Higher values are better for all benchmarks. Empty cells mean not available.
"""
return leaderboard_md
def make_leaderboard_md_live(elo_results):
leaderboard_md = f"""
# Leaderboard
Last updated: {elo_results["last_updated_datetime"]}
{elo_results["leaderboard_table"]}
"""
return leaderboard_md
def update_elo_components(
max_num_files, elo_results_file, ban_ip_file, exclude_model_names
):
log_files = get_log_files(max_num_files)
# Leaderboard
if elo_results_file is None: # Do live update
ban_ip_list = json.load(open(ban_ip_file)) if ban_ip_file else None
battles = clean_battle_data(
log_files, exclude_model_names, ban_ip_list=ban_ip_list
)
elo_results = report_elo_analysis_results(battles, scale=2)
leader_component_values[0] = make_leaderboard_md_live(elo_results)
leader_component_values[1] = elo_results["win_fraction_heatmap"]
leader_component_values[2] = elo_results["battle_count_heatmap"]
leader_component_values[3] = elo_results["bootstrap_elo_rating"]
leader_component_values[4] = elo_results["average_win_rate_bar"]
# Basic stats
basic_stats = report_basic_stats(log_files)
md0 = f"Last updated: {basic_stats['last_updated_datetime']}"
md1 = "### Action Histogram\n"
md1 += basic_stats["action_hist_md"] + "\n"
md2 = "### Anony. Vote Histogram\n"
md2 += basic_stats["anony_vote_hist_md"] + "\n"
md3 = "### Model Call Histogram\n"
md3 += basic_stats["model_hist_md"] + "\n"
md4 = "### Model Call (Last 24 Hours)\n"
md4 += basic_stats["num_chats_last_24_hours"] + "\n"
basic_component_values[0] = md0
basic_component_values[1] = basic_stats["chat_dates_bar"]
basic_component_values[2] = md1
basic_component_values[3] = md2
basic_component_values[4] = md3
basic_component_values[5] = md4
def update_worker(
max_num_files, interval, elo_results_file, ban_ip_file, exclude_model_names
):
while True:
tic = time.time()
update_elo_components(
max_num_files, elo_results_file, ban_ip_file, exclude_model_names
)
durtaion = time.time() - tic
print(f"update duration: {durtaion:.2f} s")
time.sleep(max(interval - durtaion, 0))
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
return basic_component_values + leader_component_values
def model_hyperlink(model_name, link):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_leaderboard_table_csv(filename, add_hyperlink=True):
lines = open(filename).readlines()
heads = [v.strip() for v in lines[0].split(",")]
rows = []
for i in range(1, len(lines)):
row = [v.strip() for v in lines[i].split(",")]
for j in range(len(heads)):
item = {}
for h, v in zip(heads, row):
if h == "Arena Elo rating":
if v != "-":
v = int(ast.literal_eval(v))
else:
v = np.nan
elif h == "MMLU":
if v != "-":
v = round(ast.literal_eval(v) * 100, 1)
else:
v = np.nan
elif h == "MT-bench (win rate %)":
if v != "-":
v = round(ast.literal_eval(v[:-1]), 1)
else:
v = np.nan
elif h == "MT-bench (score)":
if v != "-":
v = round(ast.literal_eval(v), 2)
else:
v = np.nan
item[h] = v
if add_hyperlink:
item["Model"] = model_hyperlink(item["Model"], item["Link"])
rows.append(item)
return rows
def build_basic_stats_tab():
empty = "Loading ..."
basic_component_values[:] = [empty, None, empty, empty, empty, empty]
md0 = gr.Markdown(empty)
gr.Markdown("#### Figure 1: Number of model calls and votes")
plot_1 = gr.Plot(show_label=False)
with gr.Row():
with gr.Column():
md1 = gr.Markdown(empty)
with gr.Column():
md2 = gr.Markdown(empty)
with gr.Row():
with gr.Column():
md3 = gr.Markdown(empty)
with gr.Column():
md4 = gr.Markdown(empty)
return [md0, plot_1, md1, md2, md3, md4]
def get_full_table(arena_df, model_table_df):
values = []
for i in range(len(model_table_df)):
row = []
model_key = model_table_df.iloc[i]["key"]
model_name = model_table_df.iloc[i]["Model"]
# model display name
row.append(model_name)
if model_key in arena_df.index:
idx = arena_df.index.get_loc(model_key)
row.append(round(arena_df.iloc[idx]["rating"]))
else:
row.append(np.nan)
row.append(model_table_df.iloc[i]["MT-bench (score)"])
row.append(model_table_df.iloc[i]["MMLU"])
# Organization
row.append(model_table_df.iloc[i]["Organization"])
# license
row.append(model_table_df.iloc[i]["License"])
values.append(row)
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
return values
def create_ranking_str(ranking, ranking_difference):
if ranking_difference > 0:
return f"{int(ranking)} \u2191"
elif ranking_difference < 0:
return f"{int(ranking)} \u2193"
else:
return f"{int(ranking)}"
def recompute_final_ranking(arena_df):
# compute ranking based on CI
ranking = {}
for i, model_a in enumerate(arena_df.index):
ranking[model_a] = 1
for j, model_b in enumerate(arena_df.index):
if i == j:
continue
if (
arena_df.loc[model_b]["rating_q025"]
> arena_df.loc[model_a]["rating_q975"]
):
ranking[model_a] += 1
return list(ranking.values())
def highlight_top_models(df):
def highlight_max_rank(s):
# Pastel Yellow with transparency, rgba(red, green, blue, alpha)
highlight_color = "rgba(255, 255, 128, 0.2)" # 50% transparent
if int(s["Rank* (UB)"].replace("↑", "").replace("↓", "")) == 1:
return [f"background-color: {highlight_color}" for _ in s]
else:
return ["" for _ in s]
# Apply and return the styled DataFrame
return df.apply(highlight_max_rank, axis=1)
def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
arena_df = arena_df.sort_values(
by=["final_ranking", "rating"], ascending=[True, False]
)
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
arena_df = arena_df.sort_values(
by=["final_ranking", "rating"], ascending=[True, False]
)
# sort by rating
if arena_subset_df is not None:
# filter out models not in the arena_df
arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
# keep only the models in the subset in arena_df and recompute final_ranking
arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
# recompute final ranking
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
# assign ranking by the order
arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
# join arena_df and arena_subset_df on index
arena_df = arena_subset_df.join(
arena_df["final_ranking"], rsuffix="_global", how="inner"
)
arena_df["ranking_difference"] = (
arena_df["final_ranking_global"] - arena_df["final_ranking"]
)
arena_df = arena_df.sort_values(
by=["final_ranking", "rating"], ascending=[True, False]
)
arena_df["final_ranking"] = arena_df.apply(
lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]),
axis=1,
)
arena_df["final_ranking"] = arena_df["final_ranking"].astype(str)
values = []
for i in range(len(arena_df)):
row = []
model_key = arena_df.index[i]
try: # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models)
model_name = model_table_df[model_table_df["key"] == model_key][
"Model"
].values[0]
# rank
ranking = arena_df.iloc[i].get("final_ranking") or i + 1
row.append(ranking)
if arena_subset_df is not None:
row.append(arena_df.iloc[i].get("ranking_difference") or 0)
# model display name
row.append(model_name)
# elo rating
row.append(round(arena_df.iloc[i]["rating"]))
upper_diff = round(
arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
)
lower_diff = round(
arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
)
row.append(f"+{upper_diff}/-{lower_diff}")
# num battles
row.append(round(arena_df.iloc[i]["num_battles"]))
# Organization
row.append(
model_table_df[model_table_df["key"] == model_key][
"Organization"
].values[0]
)
# license
row.append(
model_table_df[model_table_df["key"] == model_key]["License"].values[0]
)
cutoff_date = model_table_df[model_table_df["key"] == model_key][
"Knowledge cutoff date"
].values[0]
if cutoff_date == "-":
row.append("Unknown")
else:
row.append(cutoff_date)
values.append(row)
except Exception as e:
print(f"{model_key} - {e}")
return values
key_to_category_name = {
"full": "Overall",
"dedup": "De-duplicate Top Redundant Queries (soon to be default)",
"coding": "Coding",
"hard_6": "Hard Prompts (Overall)",
"hard_english_6": "Hard Prompts (English)",
"long_user": "Longer Query",
"english": "English",
"chinese": "Chinese",
"french": "French",
"german": "German",
"spanish": "Spanish",
"russian": "Russian",
"japanese": "Japanese",
"no_tie": "Exclude Ties",
"no_short": "Exclude Short Query (< 5 tokens)",
"no_refusal": "Exclude Refusal",
"overall_limit_5_user_vote": "overall_limit_5_user_vote",
"full_old": "Overall (Deprecated)",
}
cat_name_to_explanation = {
"Overall": "Overall Questions",
"De-duplicate Top Redundant Queries (soon to be default)": "De-duplicate top redundant queries (top 0.1%). See details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/#note-enhancing-quality-through-de-duplication).",
"Coding": "Coding: whether conversation contains code snippets",
"Hard Prompts (Overall)": "Hard Prompts (Overall): details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/)",
"Hard Prompts (English)": "Hard Prompts (English), note: the delta is to English Category. details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/)",
"Longer Query": "Longer Query (>= 500 tokens)",
"English": "English Prompts",
"Chinese": "Chinese Prompts",
"French": "French Prompts",
"German": "German Prompts",
"Spanish": "Spanish Prompts",
"Russian": "Russian Prompts",
"Japanese": "Japanese Prompts",
"Exclude Ties": "Exclude Ties and Bothbad",
"Exclude Short Query (< 5 tokens)": "Exclude Short User Query (< 5 tokens)",
"Exclude Refusal": 'Exclude model responses with refusal (e.g., "I cannot answer")',
"overall_limit_5_user_vote": "overall_limit_5_user_vote",
"Overall (Deprecated)": "Overall without De-duplicating Top Redundant Queries (top 0.1%). See details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/#note-enhancing-quality-through-de-duplication).",
}
cat_name_to_baseline = {
"Hard Prompts (English)": "English",
}
def build_leaderboard_tab(
elo_results_file, leaderboard_table_file, show_plot=False, mirror=False
):
arena_dfs = {}
category_elo_results = {}
if elo_results_file is None: # Do live update
default_md = "Loading ..."
p1 = p2 = p3 = p4 = None
else:
with open(elo_results_file, "rb") as fin:
elo_results = pickle.load(fin)
last_updated_time = None
if "full" in elo_results:
last_updated_time = elo_results["full"]["last_updated_datetime"].split(
" "
)[0]
for k in key_to_category_name.keys():
if k not in elo_results:
continue
arena_dfs[key_to_category_name[k]] = elo_results[k][
"leaderboard_table_df"
]
category_elo_results[key_to_category_name[k]] = elo_results[k]
p1 = category_elo_results["Overall"]["win_fraction_heatmap"]
p2 = category_elo_results["Overall"]["battle_count_heatmap"]
p3 = category_elo_results["Overall"]["bootstrap_elo_rating"]
p4 = category_elo_results["Overall"]["average_win_rate_bar"]
arena_df = arena_dfs["Overall"]
default_md = make_default_md_1(
arena_df, category_elo_results["Overall"], mirror=mirror
)
default_md_2 = make_default_md_2(
arena_df, category_elo_results["Overall"], mirror=mirror
)
with gr.Row():
with gr.Column(scale=4):
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
with gr.Column(scale=1):
vote_button = gr.Button("Vote!", link="https://chat.lmsys.org")
md2 = gr.Markdown(default_md_2, elem_id="leaderboard_markdown")
if leaderboard_table_file:
data = load_leaderboard_table_csv(leaderboard_table_file)
model_table_df = pd.DataFrame(data)
with gr.Tabs() as tabs:
# arena table
arena_table_vals = get_arena_table(arena_df, model_table_df)
with gr.Tab("Arena", id=0):
md = make_arena_leaderboard_md(arena_df, last_updated_time)
gr.Markdown(md, elem_id="leaderboard_markdown")
with gr.Row():
with gr.Column(scale=2):
category_dropdown = gr.Dropdown(
choices=list(arena_dfs.keys()),
label="Category",
value="Overall",
)
default_category_details = make_category_arena_leaderboard_md(
arena_df, arena_df, name="Overall"
)
with gr.Column(scale=4, variant="panel"):
category_deets = gr.Markdown(
default_category_details, elem_id="category_deets"
)
arena_vals = pd.DataFrame(
arena_table_vals,
columns=[
"Rank* (UB)",
"Model",
"Arena Elo",
"95% CI",
"Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
)
elo_display_df = gr.Dataframe(
headers=[
"Rank* (UB)",
"Model",
"Arena Elo",
"95% CI",
"Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
datatype=[
"str",
"markdown",
"number",
"str",
"number",
"str",
"str",
"str",
],
# value=highlight_top_models(arena_vals.style),
value=arena_vals.style,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 190, 100, 100, 90, 130, 150, 100],
wrap=True,
)
gr.Markdown(
f"""Note: in each category, we exclude models with fewer than 300 votes as their confidence intervals can be large.""",
elem_id="leaderboard_markdown",
)
leader_component_values[:] = [default_md, p1, p2, p3, p4]
if show_plot:
more_stats_md = gr.Markdown(
f"""## More Statistics for Chatbot Arena (Overall)""",
elem_id="leaderboard_header_markdown",
)
with gr.Row():
with gr.Column():
gr.Markdown(
"#### Figure 1: Confidence Intervals on Model Strength (via Bootstrapping)",
elem_id="plot-title",
)
plot_3 = gr.Plot(p3, show_label=False)
with gr.Column():
gr.Markdown(
"#### Figure 2: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)",
elem_id="plot-title",
)
plot_4 = gr.Plot(p4, show_label=False)
with gr.Row():
with gr.Column():
gr.Markdown(
"#### Figure 3: Fraction of Model A Wins for All Non-tied A vs. B Battles",
elem_id="plot-title",
)
plot_1 = gr.Plot(
p1, show_label=False, elem_id="plot-container"
)
with gr.Column():
gr.Markdown(
"#### Figure 4: Battle Count for Each Combination of Models (without Ties)",
elem_id="plot-title",
)
plot_2 = gr.Plot(p2, show_label=False)
with gr.Tab("Full Leaderboard", id=1):
md = make_full_leaderboard_md(elo_results)
gr.Markdown(md, elem_id="leaderboard_markdown")
full_table_vals = get_full_table(arena_df, model_table_df)
gr.Dataframe(
headers=[
"Model",
"Arena Elo",
"MT-bench",
"MMLU",
"Organization",
"License",
],
datatype=["markdown", "number", "number", "number", "str", "str"],
value=full_table_vals,
elem_id="full_leaderboard_dataframe",
column_widths=[200, 100, 100, 100, 150, 150],
height=700,
wrap=True,
)
if not show_plot:
gr.Markdown(
""" ## Visit our [HF space](https://huggingface.co./spaces/lmsys/chatbot-arena-leaderboard) for more analysis!
If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model).
""",
elem_id="leaderboard_markdown",
)
else:
pass
def update_leaderboard_df(arena_table_vals):
elo_datarame = pd.DataFrame(
arena_table_vals,
columns=[
"Rank* (UB)",
"Delta",
"Model",
"Arena Elo",
"95% CI",
"Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
)
# goal: color the rows based on the rank with styler
def highlight_max(s):
# all items in S which contain up arrow should be green, down arrow should be red, otherwise black
return [
"color: green; font-weight: bold"
if "\u2191" in v
else "color: red; font-weight: bold"
if "\u2193" in v
else ""
for v in s
]
def highlight_rank_max(s):
return [
"color: green; font-weight: bold"
if v > 0
else "color: red; font-weight: bold"
if v < 0
else ""
for v in s
]
return elo_datarame.style.apply(highlight_max, subset=["Rank* (UB)"]).apply(
highlight_rank_max, subset=["Delta"]
)
def update_leaderboard_and_plots(category):
arena_subset_df = arena_dfs[category]
arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 300]
elo_subset_results = category_elo_results[category]
baseline_category = cat_name_to_baseline.get(category, "Overall")
arena_df = arena_dfs[baseline_category]
arena_values = get_arena_table(
arena_df,
model_table_df,
arena_subset_df=arena_subset_df if category != "Overall" else None,
)
if category != "Overall":
arena_values = update_leaderboard_df(arena_values)
# arena_values = highlight_top_models(arena_values)
arena_values = gr.Dataframe(
headers=[
"Rank* (UB)",
"Delta",
"Model",
"Arena Elo",
"95% CI",
"Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
datatype=[
"str",
"number",
"markdown",
"number",
"str",
"number",
"str",
"str",
"str",
],
value=arena_values,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 70, 200, 90, 100, 90, 120, 150, 100],
wrap=True,
)
else:
# not_arena_values = pd.DataFrame(arena_values, columns=["Rank* (UB)",
# "Model",
# "Arena Elo",
# "95% CI",
# "Votes",
# "Organization",
# "License",
# "Knowledge Cutoff",],
# )
# arena_values = highlight_top_models(not_arena_values.style)
arena_values = gr.Dataframe(
headers=[
"Rank* (UB)",
"Model",
"Arena Elo",
"95% CI",
"Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
datatype=[
"str",
"markdown",
"number",
"str",
"number",
"str",
"str",
"str",
],
value=arena_values,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 190, 100, 100, 90, 140, 150, 100],
wrap=True,
)
p1 = elo_subset_results["win_fraction_heatmap"]
p2 = elo_subset_results["battle_count_heatmap"]
p3 = elo_subset_results["bootstrap_elo_rating"]
p4 = elo_subset_results["average_win_rate_bar"]
more_stats_md = f"""## More Statistics for Chatbot Arena - {category}
"""
leaderboard_md = make_category_arena_leaderboard_md(
arena_df, arena_subset_df, name=category
)
return arena_values, p1, p2, p3, p4, more_stats_md, leaderboard_md
category_dropdown.change(
update_leaderboard_and_plots,
inputs=[category_dropdown],
outputs=[
elo_display_df,
plot_1,
plot_2,
plot_3,
plot_4,
more_stats_md,
category_deets,
],
)
from fastchat.serve.gradio_web_server import acknowledgment_md
with gr.Accordion(
"Citation",
open=True,
):
citation_md = """
### Citation
Please cite the following paper if you find our leaderboard or dataset helpful.
```
@misc{chiang2024chatbot,
title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference},
author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica},
year={2024},
eprint={2403.04132},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
"""
gr.Markdown(citation_md, elem_id="leaderboard_markdown")
gr.Markdown(acknowledgment_md, elem_id="ack_markdown")
if show_plot:
return [md_1, plot_1, plot_2, plot_3, plot_4]
return [md_1]
def build_demo(elo_results_file, leaderboard_table_file):
from fastchat.serve.gradio_web_server import block_css
text_size = gr.themes.sizes.text_lg
# load theme from theme.json
theme = gr.themes.Default.load("theme.json")
# set text size to large
theme.text_size = text_size
theme.set(
button_large_text_size="40px",
button_small_text_size="40px",
button_large_text_weight="1000",
button_small_text_weight="1000",
button_shadow="*shadow_drop_lg",
button_shadow_hover="*shadow_drop_lg",
checkbox_label_shadow="*shadow_drop_lg",
button_shadow_active="*shadow_inset",
button_secondary_background_fill="*primary_300",
button_secondary_background_fill_dark="*primary_700",
button_secondary_background_fill_hover="*primary_200",
button_secondary_background_fill_hover_dark="*primary_500",
button_secondary_text_color="*primary_800",
button_secondary_text_color_dark="white",
)
with gr.Blocks(
title="Chatbot Arena Leaderboard",
# theme=gr.themes.Default(text_size=text_size),
theme=theme,
css=block_css,
) as demo:
with gr.Tabs() as tabs:
with gr.Tab("Leaderboard", id=0):
leader_components = build_leaderboard_tab(
elo_results_file,
leaderboard_table_file,
show_plot=True,
mirror=False,
)
with gr.Tab("Basic Stats", id=1):
basic_components = build_basic_stats_tab()
url_params = gr.JSON(visible=False)
demo.load(
load_demo,
[url_params],
basic_components + leader_components,
js=get_window_url_params_js,
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--share", action="store_true")
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument("--update-interval", type=int, default=300)
parser.add_argument("--max-num-files", type=int)
parser.add_argument("--elo-results-file", type=str)
parser.add_argument("--leaderboard-table-file", type=str)
parser.add_argument("--ban-ip-file", type=str)
parser.add_argument("--exclude-model-names", type=str, nargs="+")
args = parser.parse_args()
logger = build_logger("monitor", "monitor.log")
logger.info(f"args: {args}")
if args.elo_results_file is None: # Do live update
update_thread = threading.Thread(
target=update_worker,
args=(
args.max_num_files,
args.update_interval,
args.elo_results_file,
args.ban_ip_file,
args.exclude_model_names,
),
)
update_thread.start()
demo = build_demo(args.elo_results_file, args.leaderboard_table_file)
demo.queue(
default_concurrency_limit=args.concurrency_count,
status_update_rate=10,
api_open=False,
).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
max_threads=200,
)
|