Bofandra commited on
Commit
7c29081
·
verified ·
1 Parent(s): 1b0b902

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -34,7 +34,7 @@ def find(query):
34
  queries = [
35
  get_detailed_instruct(task, query)
36
  ]
37
- print("start\n")
38
  print(time.time())
39
 
40
  hadiths = pd.read_csv('all_hadiths_clean.csv', delimiter=",")
@@ -42,18 +42,21 @@ def find(query):
42
  document_embeddings = torch.load('encoded_hadiths_multilingual-e5-large-instruct (1).sav',map_location ='cpu')
43
  #file = open('encoded_hadiths_multilingual-e5-large-instruct (1).sav','rb')
44
  #document_embeddings = pickle.load(file)
45
- print("load hadiths\n")
46
  print(time.time())
47
 
48
  query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
 
 
 
49
  scores = (query_embeddings @ document_embeddings.T) * 100
50
- print("consine similarity\n")
51
  print(time.time())
52
 
53
  # insert the similarity value to dataframe & sort it
54
  hadiths['similarity'] = scores.tolist()[0]
55
  sorted_hadiths = hadiths.sort_values(by='similarity', ascending=False)
56
- print("sort hadiths\n")
57
  print(time.time())
58
 
59
  results = sorted_hadiths.head(3).drop(columns=['id', 'hadith_id', 'chain_indx'])
@@ -67,7 +70,7 @@ def find(query):
67
  results['text'] = '<a href="'+url+'">'+results['text_en']+ '</a>' + ' (' + results['source'].astype(str) + ')'
68
  results = results.drop(columns=['source', 'chapter_no', 'hadith_no', 'chapter', 'similarity', 'text_ar', 'text_en'])
69
 
70
- print("prepare results\n")
71
  print(time.time())
72
 
73
  #return sorted_quran
 
34
  queries = [
35
  get_detailed_instruct(task, query)
36
  ]
37
+ print("start")
38
  print(time.time())
39
 
40
  hadiths = pd.read_csv('all_hadiths_clean.csv', delimiter=",")
 
42
  document_embeddings = torch.load('encoded_hadiths_multilingual-e5-large-instruct (1).sav',map_location ='cpu')
43
  #file = open('encoded_hadiths_multilingual-e5-large-instruct (1).sav','rb')
44
  #document_embeddings = pickle.load(file)
45
+ print("load hadiths")
46
  print(time.time())
47
 
48
  query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
49
+ print("embed query")
50
+ print(time.time())
51
+
52
  scores = (query_embeddings @ document_embeddings.T) * 100
53
+ print("consine similarity")
54
  print(time.time())
55
 
56
  # insert the similarity value to dataframe & sort it
57
  hadiths['similarity'] = scores.tolist()[0]
58
  sorted_hadiths = hadiths.sort_values(by='similarity', ascending=False)
59
+ print("sort hadiths")
60
  print(time.time())
61
 
62
  results = sorted_hadiths.head(3).drop(columns=['id', 'hadith_id', 'chain_indx'])
 
70
  results['text'] = '<a href="'+url+'">'+results['text_en']+ '</a>' + ' (' + results['source'].astype(str) + ')'
71
  results = results.drop(columns=['source', 'chapter_no', 'hadith_no', 'chapter', 'similarity', 'text_ar', 'text_en'])
72
 
73
+ print("prepare results")
74
  print(time.time())
75
 
76
  #return sorted_quran