Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- Medcleave.iml +9 -0
- app.py +176 -0
- crawled_contents.pkl +3 -0
- crawled_urls.txt +98 -0
- crawler.py +190 -0
- faiss_index.index +0 -0
- requirements.txt +7 -0
- sample_embeddings.npy +3 -0
Medcleave.iml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager" inherit-compiler-output="true">
|
4 |
+
<exclude-output />
|
5 |
+
<content url="file://$MODULE_DIR$" />
|
6 |
+
<orderEntry type="jdk" jdkName="Python 3.12 (Medcleave)" jdkType="Python SDK" />
|
7 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
8 |
+
</component>
|
9 |
+
</module>
|
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faiss
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModel, AutoTokenizer, pipeline
|
5 |
+
import requests
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
import os
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# Step 1: Define PromptTemplate class using LangChain's format
|
11 |
+
class PromptTemplate:
|
12 |
+
def __init__(self, template):
|
13 |
+
self.template = template
|
14 |
+
|
15 |
+
def format(self, **kwargs):
|
16 |
+
formatted_text = self.template
|
17 |
+
for key, value in kwargs.items():
|
18 |
+
formatted_text = formatted_text.replace("{" + key + "}", str(value))
|
19 |
+
return formatted_text
|
20 |
+
|
21 |
+
# Step 2: Load embedding model and tokenizer
|
22 |
+
embedding_model_name = "ls-da3m0ns/bge_large_medical"
|
23 |
+
embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name)
|
24 |
+
embedding_model = AutoModel.from_pretrained(embedding_model_name)
|
25 |
+
embedding_model.eval() # Set model to evaluation mode
|
26 |
+
|
27 |
+
# Move the embedding model to GPU
|
28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
embedding_model.to(device)
|
30 |
+
|
31 |
+
# Step 3: Load Faiss index
|
32 |
+
index_file = "faiss_index.index"
|
33 |
+
if os.path.exists(index_file):
|
34 |
+
index = faiss.read_index(index_file)
|
35 |
+
assert isinstance(index, faiss.IndexFlat), "Expected Faiss IndexFlat type"
|
36 |
+
assert index.d == 1024, f"Expected index dimension 1024, but got {index.d}"
|
37 |
+
else:
|
38 |
+
raise ValueError(f"Faiss index file '{index_file}' not found.")
|
39 |
+
|
40 |
+
# Step 4: Prepare URLs
|
41 |
+
urls_file = "crawled_urls.txt"
|
42 |
+
if os.path.exists(urls_file):
|
43 |
+
with open(urls_file, "r") as f:
|
44 |
+
urls = [line.strip() for line in f]
|
45 |
+
else:
|
46 |
+
raise ValueError(f"URLs file '{urls_file}' not found.")
|
47 |
+
|
48 |
+
# Step 5: Check if sample embeddings file exists, if not create it
|
49 |
+
sample_embeddings_file = "sample_embeddings.npy"
|
50 |
+
if not os.path.exists(sample_embeddings_file):
|
51 |
+
print("Sample embeddings file not found, creating new sample embeddings...")
|
52 |
+
# Generate sample data to fit PCA
|
53 |
+
sample_texts = [
|
54 |
+
"medical diagnosis",
|
55 |
+
"healthcare treatment",
|
56 |
+
"patient care",
|
57 |
+
"clinical research",
|
58 |
+
"disease prevention"
|
59 |
+
]
|
60 |
+
|
61 |
+
sample_embeddings = []
|
62 |
+
for text in sample_texts:
|
63 |
+
inputs = embedding_tokenizer(text, return_tensors="pt").to(device)
|
64 |
+
with torch.no_grad():
|
65 |
+
outputs = embedding_model(**inputs)
|
66 |
+
embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
67 |
+
sample_embeddings.append(embedding)
|
68 |
+
|
69 |
+
sample_embeddings = np.vstack(sample_embeddings)
|
70 |
+
np.save(sample_embeddings_file, sample_embeddings)
|
71 |
+
else:
|
72 |
+
sample_embeddings = np.load(sample_embeddings_file)
|
73 |
+
|
74 |
+
# Step 6: Define function for similarity search
|
75 |
+
def search_similar(query_text, top_k=3):
|
76 |
+
inputs = embedding_tokenizer(query_text, return_tensors="pt").to(device)
|
77 |
+
with torch.no_grad():
|
78 |
+
outputs = embedding_model(**inputs)
|
79 |
+
query_embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
80 |
+
|
81 |
+
query_embedding = query_embedding / np.linalg.norm(query_embedding)
|
82 |
+
query_embedding = query_embedding.reshape(1, -1).astype(np.float32)
|
83 |
+
_, idx = index.search(query_embedding, top_k)
|
84 |
+
|
85 |
+
results = []
|
86 |
+
for i in range(top_k):
|
87 |
+
key = int(idx[0][i])
|
88 |
+
results.append(urls[key]) # Return URLs only for simplicity
|
89 |
+
|
90 |
+
return results
|
91 |
+
|
92 |
+
# Step 7: Function to extract content from URLs
|
93 |
+
def extract_content(url):
|
94 |
+
try:
|
95 |
+
response = requests.get(url)
|
96 |
+
response.raise_for_status()
|
97 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
98 |
+
|
99 |
+
# Example: Extracting relevant content based on query
|
100 |
+
paragraphs = soup.find_all('p')
|
101 |
+
relevant_content = ""
|
102 |
+
for para in paragraphs:
|
103 |
+
relevant_content += para.get_text().strip()
|
104 |
+
|
105 |
+
return relevant_content.strip() # Return relevant content as a single string
|
106 |
+
except requests.RequestException as e:
|
107 |
+
print(f"Error fetching content from {url}: {e}")
|
108 |
+
return ""
|
109 |
+
|
110 |
+
# Step 8: Use the LangChain text generation pipeline for generating answers
|
111 |
+
generation_model_name = "microsoft/Phi-3-mini-4k-instruct"
|
112 |
+
text_generator = pipeline("text-generation", model=generation_model_name, device=0)
|
113 |
+
|
114 |
+
# Step 9: Function to generate answer based on query and content
|
115 |
+
def generate_answer(query, contents):
|
116 |
+
answers = []
|
117 |
+
prompt_template = PromptTemplate("""
|
118 |
+
|
119 |
+
### Medical Assistant Context ###
|
120 |
+
As a helpful medical assistant, I'm here to assist you with your query.
|
121 |
+
|
122 |
+
### Medical Query ###
|
123 |
+
Query: {query}
|
124 |
+
|
125 |
+
### Explanation ###
|
126 |
+
{generated_text}
|
127 |
+
|
128 |
+
### Revised Response ###
|
129 |
+
Response: {generated_text}
|
130 |
+
""")
|
131 |
+
|
132 |
+
for content in contents:
|
133 |
+
if content:
|
134 |
+
prompt = prompt_template.format(query=query, content=content, generated_text="")
|
135 |
+
# Ensure prompt is wrapped in a list for text generation
|
136 |
+
generated_texts = text_generator([prompt], max_new_tokens=200, num_return_sequences=1, truncation=True)
|
137 |
+
# Debugging: print the generated_texts object
|
138 |
+
#print(f"DEBUG: generated_texts: {generated_texts}")
|
139 |
+
# Ensure generated_texts is a list and not None
|
140 |
+
if generated_texts and isinstance(generated_texts, list) and len(generated_texts) > 0:
|
141 |
+
# Extract the response text only from the generated result
|
142 |
+
response = generated_texts[0][0]["generated_text"]
|
143 |
+
response_start = response.find("Response:") + len("Response:")
|
144 |
+
answers.append(response[response_start:].strip())
|
145 |
+
else:
|
146 |
+
answers.append("No AI-generated text found.")
|
147 |
+
else:
|
148 |
+
answers.append("No content available to generate an answer.")
|
149 |
+
return answers
|
150 |
+
|
151 |
+
# Gradio interface
|
152 |
+
def process_query(query):
|
153 |
+
top_results = search_similar(query, top_k=3)
|
154 |
+
if top_results:
|
155 |
+
content = extract_content(top_results[0])
|
156 |
+
answer = generate_answer(query, [content])[0]
|
157 |
+
|
158 |
+
response = f"Rank 1: URL - {top_results[0]}\n"
|
159 |
+
response += f"Generated Answer:\n{answer}\n"
|
160 |
+
|
161 |
+
similar_urls = "\n".join(top_results[1:]) # The second and third URLs as similar URLs
|
162 |
+
return response, similar_urls
|
163 |
+
else:
|
164 |
+
return "No results found.", "No similar URLs found."
|
165 |
+
|
166 |
+
demo = gr.Interface(
|
167 |
+
fn=process_query,
|
168 |
+
inputs=gr.Textbox(label="Enter your query"),
|
169 |
+
outputs=[
|
170 |
+
gr.Textbox(label="Generated Answer"),
|
171 |
+
gr.Textbox(label="Similar URLs")
|
172 |
+
]
|
173 |
+
)
|
174 |
+
|
175 |
+
if __name__ == "__main__":
|
176 |
+
demo.launch(share=True)
|
crawled_contents.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7d4abd213fc62a689e50e351eb69762b2c6a38e074832321fc4f5e498f59a4f
|
3 |
+
size 2373777
|
crawled_urls.txt
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
https://go.drugbank.com/drugs/DB00001
|
2 |
+
https://go.drugbank.com/drugs/DB00002
|
3 |
+
https://go.drugbank.com/drugs/DB00003
|
4 |
+
https://go.drugbank.com/drugs/DB00004
|
5 |
+
https://go.drugbank.com/drugs/DB00005
|
6 |
+
https://go.drugbank.com/drugs/DB00006
|
7 |
+
https://go.drugbank.com/drugs/DB00007
|
8 |
+
https://go.drugbank.com/drugs/DB00008
|
9 |
+
https://go.drugbank.com/drugs/DB00009
|
10 |
+
https://go.drugbank.com/drugs/DB00010
|
11 |
+
https://go.drugbank.com/drugs/DB00011
|
12 |
+
https://go.drugbank.com/drugs/DB00012
|
13 |
+
https://go.drugbank.com/drugs/DB00013
|
14 |
+
https://go.drugbank.com/drugs/DB00014
|
15 |
+
https://go.drugbank.com/drugs/DB00015
|
16 |
+
https://go.drugbank.com/drugs/DB00016
|
17 |
+
https://go.drugbank.com/drugs/DB00017
|
18 |
+
https://go.drugbank.com/drugs/DB00018
|
19 |
+
https://go.drugbank.com/drugs/DB00019
|
20 |
+
https://go.drugbank.com/drugs/DB00020
|
21 |
+
https://go.drugbank.com/drugs/DB00021
|
22 |
+
https://go.drugbank.com/drugs/DB00022
|
23 |
+
https://go.drugbank.com/drugs/DB00023
|
24 |
+
https://go.drugbank.com/drugs/DB00024
|
25 |
+
https://go.drugbank.com/drugs/DB00025
|
26 |
+
https://go.drugbank.com/drugs/DB00026
|
27 |
+
https://go.drugbank.com/drugs/DB00027
|
28 |
+
https://go.drugbank.com/drugs/DB00028
|
29 |
+
https://go.drugbank.com/drugs/DB00029
|
30 |
+
https://go.drugbank.com/drugs/DB00030
|
31 |
+
https://go.drugbank.com/drugs/DB00031
|
32 |
+
https://go.drugbank.com/drugs/DB00032
|
33 |
+
https://go.drugbank.com/drugs/DB00033
|
34 |
+
https://go.drugbank.com/drugs/DB00034
|
35 |
+
https://go.drugbank.com/drugs/DB00035
|
36 |
+
https://go.drugbank.com/drugs/DB00036
|
37 |
+
https://go.drugbank.com/drugs/DB00037
|
38 |
+
https://go.drugbank.com/drugs/DB00038
|
39 |
+
https://go.drugbank.com/drugs/DB00039
|
40 |
+
https://go.drugbank.com/drugs/DB00040
|
41 |
+
https://go.drugbank.com/drugs/DB00041
|
42 |
+
https://go.drugbank.com/drugs/DB00042
|
43 |
+
https://go.drugbank.com/drugs/DB00043
|
44 |
+
https://go.drugbank.com/drugs/DB00044
|
45 |
+
https://go.drugbank.com/drugs/DB00045
|
46 |
+
https://go.drugbank.com/drugs/DB00046
|
47 |
+
https://go.drugbank.com/drugs/DB00047
|
48 |
+
https://go.drugbank.com/drugs/DB00048
|
49 |
+
https://go.drugbank.com/drugs/DB00049
|
50 |
+
https://go.drugbank.com/drugs/DB00050
|
51 |
+
https://go.drugbank.com/drugs/DB00051
|
52 |
+
https://go.drugbank.com/drugs/DB00052
|
53 |
+
https://go.drugbank.com/drugs/DB00053
|
54 |
+
https://go.drugbank.com/drugs/DB00054
|
55 |
+
https://go.drugbank.com/drugs/DB00055
|
56 |
+
https://go.drugbank.com/drugs/DB00056
|
57 |
+
https://go.drugbank.com/drugs/DB00057
|
58 |
+
https://go.drugbank.com/drugs/DB00058
|
59 |
+
https://go.drugbank.com/drugs/DB00059
|
60 |
+
https://go.drugbank.com/drugs/DB00060
|
61 |
+
https://go.drugbank.com/drugs/DB00061
|
62 |
+
https://go.drugbank.com/drugs/DB00062
|
63 |
+
https://go.drugbank.com/drugs/DB00063
|
64 |
+
https://go.drugbank.com/drugs/DB00064
|
65 |
+
https://go.drugbank.com/drugs/DB00065
|
66 |
+
https://go.drugbank.com/drugs/DB00066
|
67 |
+
https://go.drugbank.com/drugs/DB00067
|
68 |
+
https://go.drugbank.com/drugs/DB00068
|
69 |
+
https://go.drugbank.com/drugs/DB00069
|
70 |
+
https://go.drugbank.com/drugs/DB00070
|
71 |
+
https://go.drugbank.com/drugs/DB00071
|
72 |
+
https://go.drugbank.com/drugs/DB00072
|
73 |
+
https://go.drugbank.com/drugs/DB00073
|
74 |
+
https://go.drugbank.com/drugs/DB00074
|
75 |
+
https://go.drugbank.com/drugs/DB00075
|
76 |
+
https://go.drugbank.com/drugs/DB00076
|
77 |
+
https://go.drugbank.com/drugs/DB00078
|
78 |
+
https://go.drugbank.com/drugs/DB00080
|
79 |
+
https://go.drugbank.com/drugs/DB00081
|
80 |
+
https://go.drugbank.com/drugs/DB00082
|
81 |
+
https://go.drugbank.com/drugs/DB00083
|
82 |
+
https://go.drugbank.com/drugs/DB00084
|
83 |
+
https://go.drugbank.com/drugs/DB00085
|
84 |
+
https://go.drugbank.com/drugs/DB00086
|
85 |
+
https://go.drugbank.com/drugs/DB00087
|
86 |
+
https://go.drugbank.com/drugs/DB00088
|
87 |
+
https://go.drugbank.com/drugs/DB00089
|
88 |
+
https://go.drugbank.com/drugs/DB00090
|
89 |
+
https://go.drugbank.com/drugs/DB00091
|
90 |
+
https://go.drugbank.com/drugs/DB00092
|
91 |
+
https://go.drugbank.com/drugs/DB00093
|
92 |
+
https://go.drugbank.com/drugs/DB00094
|
93 |
+
https://go.drugbank.com/drugs/DB00095
|
94 |
+
https://go.drugbank.com/drugs/DB00096
|
95 |
+
https://go.drugbank.com/drugs/DB00097
|
96 |
+
https://go.drugbank.com/drugs/DB00098
|
97 |
+
https://go.drugbank.com/drugs/DB00099
|
98 |
+
https://go.drugbank.com/drugs/DB00100
|
crawler.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
from urllib.parse import urljoin, urlparse
|
4 |
+
import os
|
5 |
+
from transformers import BertModel, BertTokenizer
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import faiss
|
9 |
+
from concurrent.futures import ThreadPoolExecutor
|
10 |
+
from retrying import retry
|
11 |
+
import time
|
12 |
+
from ratelimit import limits, sleep_and_retry
|
13 |
+
import threading
|
14 |
+
|
15 |
+
# Global counters for URLs and FAISS index initialization
|
16 |
+
total_urls_crawled = 0
|
17 |
+
index_file = 'faiss_index.bin' # FAISS index file path
|
18 |
+
|
19 |
+
# Set of visited URLs to prevent duplicates
|
20 |
+
visited_urls = set()
|
21 |
+
|
22 |
+
# Directory to save crawled URLs
|
23 |
+
urls_dir = 'crawled_urls'
|
24 |
+
os.makedirs(urls_dir, exist_ok=True)
|
25 |
+
urls_file = os.path.join(urls_dir, 'crawled_urls.txt')
|
26 |
+
|
27 |
+
# Initialize FAISS index
|
28 |
+
def initialize_faiss_index(dimension):
|
29 |
+
if os.path.exists(index_file):
|
30 |
+
os.remove(index_file)
|
31 |
+
print("Deleted previous FAISS index file.")
|
32 |
+
index = faiss.IndexFlatL2(dimension)
|
33 |
+
return index
|
34 |
+
|
35 |
+
# Initialize or load FAISS index
|
36 |
+
dimension = 768 # Dimension of BERT embeddings
|
37 |
+
index = initialize_faiss_index(dimension)
|
38 |
+
|
39 |
+
# Initialize tokenizer and model
|
40 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
41 |
+
model = BertModel.from_pretrained('bert-base-uncased')
|
42 |
+
|
43 |
+
# Lock for thread-safe update of total_urls_crawled
|
44 |
+
lock = threading.Lock()
|
45 |
+
|
46 |
+
# Function to update and print live count of crawled URLs
|
47 |
+
def update_live_count():
|
48 |
+
global total_urls_crawled
|
49 |
+
while True:
|
50 |
+
with lock:
|
51 |
+
print(f"\rURLs crawled: {total_urls_crawled}", end='')
|
52 |
+
time.sleep(1) # Update every second
|
53 |
+
|
54 |
+
# Start live count update thread
|
55 |
+
live_count_thread = threading.Thread(target=update_live_count, daemon=True)
|
56 |
+
live_count_thread.start()
|
57 |
+
|
58 |
+
# Function to save crawled URLs to a file
|
59 |
+
def save_crawled_urls(url):
|
60 |
+
with open(urls_file, 'a') as f:
|
61 |
+
f.write(f"{url}\n")
|
62 |
+
f.flush() # Flush buffer to ensure immediate write
|
63 |
+
os.fsync(f.fileno()) # Ensure write is flushed to disk
|
64 |
+
|
65 |
+
# Function to get all links from a webpage with retry mechanism and rate limiting
|
66 |
+
@retry(stop_max_attempt_number=3, wait_fixed=2000)
|
67 |
+
@sleep_and_retry
|
68 |
+
@limits(calls=10, period=1) # Adjust calls and period based on website's rate limits
|
69 |
+
def get_links(url, domain):
|
70 |
+
global total_urls_crawled
|
71 |
+
links = []
|
72 |
+
try:
|
73 |
+
headers = {
|
74 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
75 |
+
}
|
76 |
+
response = requests.get(url, headers=headers, timeout=50)
|
77 |
+
response.raise_for_status()
|
78 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
79 |
+
for link in soup.find_all('a', href=True):
|
80 |
+
href = link['href']
|
81 |
+
normalized_url = normalize_url(href, domain)
|
82 |
+
if normalized_url and normalized_url not in visited_urls:
|
83 |
+
links.append(normalized_url)
|
84 |
+
visited_urls.add(normalized_url)
|
85 |
+
with lock:
|
86 |
+
total_urls_crawled += 1
|
87 |
+
save_crawled_urls(normalized_url) # Save crawled URL to file
|
88 |
+
|
89 |
+
# Convert text to BERT embeddings and add to FAISS index
|
90 |
+
try:
|
91 |
+
text = soup.get_text()
|
92 |
+
if text:
|
93 |
+
embeddings = convert_text_to_bert_embeddings(text, tokenizer, model)
|
94 |
+
index.add(np.array([embeddings]))
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Error adding embeddings to FAISS index: {e}")
|
97 |
+
|
98 |
+
except requests.HTTPError as e:
|
99 |
+
if e.response.status_code == 404:
|
100 |
+
print(f"HTTP 404 Error: {e}")
|
101 |
+
else:
|
102 |
+
print(f"HTTP error occurred: {e}")
|
103 |
+
except requests.RequestException as e:
|
104 |
+
print(f"Error accessing {url}: {e}")
|
105 |
+
return links
|
106 |
+
|
107 |
+
# Function to normalize and validate URLs
|
108 |
+
def normalize_url(url, domain):
|
109 |
+
parsed_url = urlparse(url)
|
110 |
+
if not parsed_url.scheme:
|
111 |
+
url = urljoin(domain, url)
|
112 |
+
if url.startswith(domain):
|
113 |
+
return url
|
114 |
+
return None
|
115 |
+
|
116 |
+
# Function to recursively get all pages and collect links with retry mechanism and rate limiting
|
117 |
+
@retry(stop_max_attempt_number=3, wait_fixed=2000)
|
118 |
+
@sleep_and_retry
|
119 |
+
@limits(calls=10, period=1) # Adjust calls and period based on website's rate limits
|
120 |
+
def crawl_site(base_url, domain, depth=0, max_depth=10): # Increased max_depth to 10
|
121 |
+
if depth > max_depth or base_url in visited_urls:
|
122 |
+
return []
|
123 |
+
visited_urls.add(base_url)
|
124 |
+
|
125 |
+
links = get_links(base_url, domain)
|
126 |
+
print(f"Crawled {len(links)} links from {base_url} at depth {depth}.") # Debugging info
|
127 |
+
|
128 |
+
try:
|
129 |
+
headers = {
|
130 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
131 |
+
}
|
132 |
+
response = requests.get(base_url, headers=headers, timeout=30)
|
133 |
+
response.raise_for_status()
|
134 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
135 |
+
links_to_crawl = []
|
136 |
+
for link in soup.find_all('a', href=True):
|
137 |
+
href = link['href']
|
138 |
+
normalized_url = normalize_url(href, domain)
|
139 |
+
if normalized_url and normalized_url not in visited_urls:
|
140 |
+
links_to_crawl.append(normalized_url)
|
141 |
+
|
142 |
+
with ThreadPoolExecutor(max_workers=500) as executor:
|
143 |
+
results = executor.map(lambda url: crawl_site(url, domain, depth + 1, max_depth), links_to_crawl)
|
144 |
+
for result in results:
|
145 |
+
links.extend(result)
|
146 |
+
|
147 |
+
except requests.HTTPError as e:
|
148 |
+
if e.response.status_code == 404:
|
149 |
+
print(f"HTTP 404 Error: {e}")
|
150 |
+
else:
|
151 |
+
print(f"HTTP error occurred: {e}")
|
152 |
+
except requests.RequestException as e:
|
153 |
+
print(f"Error accessing {base_url}: {e}")
|
154 |
+
|
155 |
+
return links
|
156 |
+
|
157 |
+
# Function to convert text to BERT embeddings
|
158 |
+
def convert_text_to_bert_embeddings(text, tokenizer, model):
|
159 |
+
inputs = tokenizer(text, return_tensors='pt', max_length=512, truncation=True, padding=True)
|
160 |
+
|
161 |
+
with torch.no_grad():
|
162 |
+
outputs = model(**inputs)
|
163 |
+
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy() # Average pool last layer's output
|
164 |
+
|
165 |
+
return embeddings
|
166 |
+
|
167 |
+
# Main process
|
168 |
+
def main():
|
169 |
+
global total_urls_crawled
|
170 |
+
domain = 'https://go.drugbank.com/' # Replace with your new domain
|
171 |
+
start_url = 'https://go.drugbank.com/drugs/DB00001' # Replace with your starting URL
|
172 |
+
|
173 |
+
|
174 |
+
try:
|
175 |
+
# Save the FAISS index at the beginning of the execution
|
176 |
+
faiss.write_index(index, index_file)
|
177 |
+
print("Initial FAISS index saved.")
|
178 |
+
|
179 |
+
urls = crawl_site(start_url, domain)
|
180 |
+
print(f"\n\nFound {total_urls_crawled} URLs.")
|
181 |
+
|
182 |
+
# Save the FAISS index at the end of execution
|
183 |
+
faiss.write_index(index, index_file)
|
184 |
+
print("Final FAISS index saved.")
|
185 |
+
|
186 |
+
except Exception as e:
|
187 |
+
print(f"Exception encountered: {e}")
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
main()
|
faiss_index.index
ADDED
Binary file (401 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
faiss-cpu
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
requests
|
6 |
+
beautifulsoup4
|
7 |
+
gradio
|
sample_embeddings.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29c28c327a9952d067087d04c9550baf1b41db8028e4aee5a2d46c4f6ac91983
|
3 |
+
size 20608
|