rvc_infer / app.py
Blane187's picture
Upload 2 files (#8)
6c308d9 verified
raw
history blame
8.2 kB
import gradio as gr
from rvc_infer import infer_audio, get_current_models
import os
import re
import random
from scipy.io.wavfile import write
from scipy.io.wavfile import read
import numpy as np
import yt_dlp
import subprocess
import zipfile
import shutil
import urllib
print("downloading RVC models")
os.system("python dowoad_param.py")
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
rvc_models_dir = os.path.join(BASE_DIR, 'models')
def update_models_list():
models_l = get_current_models(rvc_models_dir)
return gr.update(choices=models_l)
def extract_zip(extraction_folder, zip_name):
os.makedirs(extraction_folder)
with zipfile.ZipFile(zip_name, 'r') as zip_ref:
zip_ref.extractall(extraction_folder)
os.remove(zip_name)
index_filepath, model_filepath = None, None
for root, dirs, files in os.walk(extraction_folder):
for name in files:
if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
index_filepath = os.path.join(root, name)
if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
model_filepath = os.path.join(root, name)
if not model_filepath:
raise gr.Error(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
# move model and index file to extraction folder
os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
if index_filepath:
os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
# remove any unnecessary nested folders
for filepath in os.listdir(extraction_folder):
if os.path.isdir(os.path.join(extraction_folder, filepath)):
shutil.rmtree(os.path.join(extraction_folder, filepath))
def download_online_model(url, dir_name, progress=gr.Progress()):
try:
progress(0, desc=f'[~] Downloading voice model with name {dir_name}...')
zip_name = url.split('/')[-1]
extraction_folder = os.path.join(rvc_models_dir, dir_name)
if os.path.exists(extraction_folder):
raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
if 'pixeldrain.com' in url:
url = f'https://pixeldrain.com/api/file/{zip_name}'
urllib.request.urlretrieve(url, zip_name)
progress(0.5, desc='[~] Extracting zip...')
extract_zip(extraction_folder, zip_name)
return f'[+] {dir_name} Model successfully downloaded!'
except Exception as e:
raise gr.Error(str(e))
def download_audio(url):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'ytdl/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
sample_rate, audio_data = read(file_path)
audio_array = np.asarray(audio_data, dtype=np.int16)
return sample_rate, audio_array
CSS = """
"""
with gr.Blocks(theme="Hev832/Applio", fill_width=True, css=CSS) as demo:
gr.Markdown("# RVC INFER DEMOS ")
gr.Markdown(f"# recommended using colab version with more feature!<br> [![Open In Collab](https://img.shields.io/badge/google_colab-F9AB00?style=flat-square&logo=googlecolab&logoColor=white)](https://colab.research.google.com/drive/1bM1LB2__WNFxX8pyZmUPQZYq7dg58YWG?usp=sharing) ")
with gr.Tab("Inferenece"):
gr.Markdown("in progress")
model_name = gr.Dropdown(label='Voice Models', info='Models folder "rvc_infer --> models". After new models are added into this folder, click the refresh button')
ref_btn = gr.Button('Refresh Models', variant='primary')
input_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Accordion("Settings", open=False):
f0_change = gr.Slider(label="f0 change", minimum=-12, maximum=12, step=1, value=0)
f0_method = gr.Dropdown(label="f0 method", choices=["rmvpe+", "rmvpe", "fcpe", " hybrid[rmvpe+fcpe]"], value="rmvpe+")
min_pitch = gr.Textbox(label="min pitch", lines=1, value="-12")
max_pitch = gr.Textbox(label="max pitch", lines=1, value="12")
crepe_hop_length = gr.Slider(label="crepe_hop_length", minimum=0, maximum=256, step=1, value=128)
index_rate = gr.Slider(label="index_rate", minimum=0, maximum=1.0, step=0.01, value=0.75)
filter_radius = gr.Slider(label="filter_radius", minimum=0, maximum=10.0, step=0.01, value=3)
rms_mix_rate = gr.Slider(label="rms_mix_rate", minimum=0, maximum=1.0, step=0.01, value=0.25)
protect = gr.Slider(label="protect", minimum=0, maximum=1.0, step=0.01, value=0.33)
with gr.Accordion("Advanced Settings", open=False):
split_infer = gr.Checkbox(label="split_infer", value=False)
min_silence = gr.Slider(label="min_silence", minimum=0, maximum=1000, step=1, value=500)
silence_threshold = gr.Slider(label="silence_threshold", minimum=-1000, maximum=1000, step=1, value=-50)
seek_step = gr.Slider(label="seek_step", minimum=0, maximum=100, step=1, value=0)
keep_silence = gr.Slider(label="keep_silence", minimum=-1000, maximum=1000, step=1, value=100)
do_formant = gr.Checkbox(label="do_formant", value=False)
quefrency = gr.Slider(label="quefrency", minimum=0, maximum=100, step=1, value=0)
timbre = gr.Slider(label="timbre", minimum=0, maximum=100, step=1, value=1)
f0_autotune = gr.Checkbox(label="f0_autotune", value=False)
audio_format = gr.Dropdown(label="audio_format", choices=["wav"], value="wav", visible=False)
resample_sr = gr.Slider(label="resample_sr", minimum=0, maximum=100, step=1, value=0)
hubert_model_path = gr.Textbox(label="hubert_model_path", lines=1, value="hubert_base.pt", visible=False)
rmvpe_model_path = gr.Textbox(label="rmvpe_model_path", lines=1, value="rmvpe.pt", visible=False)
fcpe_model_path = gr.Textbox(label="fcpe_model_path", lines=1, value="fcpe.pt", visible=False)
submit_inference = gr.Button('Inference', variant='primary')
result_audio = gr.Audio("Output Audio")
with gr.Tab("Download Model"):
gr.Markdown("## Download Model for infernece")
url_input = gr.Textbox(label="Model URL", placeholder="Enter the URL of the model")
dir_name_input = gr.Textbox(label="Directory Name", placeholder="Enter the directory name")
output = gr.Textbox(label="Output Models")
download_button = gr.Button("Download Model")
download_button.click(download_online_model, inputs=[url_input, dir_name_input], outputs=output)
with gr.Tab(" Credits"):
gr.Markdown(
"""
this project made by [Blane187](https://huggingface.co./Blane187) with Improvements by [John6666](https://huggingfce.co/John6666)
""")
ref_btn.click(update_models_list, None, outputs=model_name)
gr.on(
triggers=[submit_inference.click],
fn=infer_audio,
inputs=[model_name, input_audio, f0_change, f0_method, min_pitch, max_pitch, crepe_hop_length, index_rate,
filter_radius, rms_mix_rate, protect, split_infer, min_silence, silence_threshold, seek_step,
keep_silence, do_formant, quefrency, timbre, f0_autotune, audio_format, resample_sr,
hubert_model_path, rmvpe_model_path, fcpe_model_path],
outputs=[result_audio],
queue=True,
show_api=True,
show_progress="full",
)
demo.queue()
demo.launch(debug=True,share=True,show_api=False)