|
import os |
|
import re |
|
import random |
|
from scipy.io.wavfile import write |
|
from scipy.io.wavfile import read |
|
import numpy as np |
|
import gradio as gr |
|
import yt_dlp |
|
import subprocess |
|
|
|
|
|
|
|
mdxnet_models = [ |
|
'UVR-MDX-NET-Inst_full_292.onnx', |
|
'UVR-MDX-NET_Inst_187_beta.onnx', |
|
'UVR-MDX-NET_Inst_82_beta.onnx', |
|
'UVR-MDX-NET_Inst_90_beta.onnx', |
|
'UVR-MDX-NET_Main_340.onnx', |
|
'UVR-MDX-NET_Main_390.onnx', |
|
'UVR-MDX-NET_Main_406.onnx', |
|
'UVR-MDX-NET_Main_427.onnx', |
|
'UVR-MDX-NET_Main_438.onnx', |
|
'UVR-MDX-NET-Inst_HQ_1.onnx', |
|
'UVR-MDX-NET-Inst_HQ_2.onnx', |
|
'UVR-MDX-NET-Inst_HQ_3.onnx', |
|
'UVR-MDX-NET-Inst_HQ_4.onnx', |
|
'UVR_MDXNET_Main.onnx', |
|
'UVR-MDX-NET-Inst_Main.onnx', |
|
'UVR_MDXNET_1_9703.onnx', |
|
'UVR_MDXNET_2_9682.onnx', |
|
'UVR_MDXNET_3_9662.onnx', |
|
'UVR-MDX-NET-Inst_1.onnx', |
|
'UVR-MDX-NET-Inst_2.onnx', |
|
'UVR-MDX-NET-Inst_3.onnx', |
|
'UVR_MDXNET_KARA.onnx', |
|
'UVR_MDXNET_KARA_2.onnx', |
|
'UVR_MDXNET_9482.onnx', |
|
'UVR-MDX-NET-Voc_FT.onnx', |
|
'Kim_Vocal_1.onnx', |
|
'Kim_Vocal_2.onnx', |
|
'Kim_Inst.onnx', |
|
'Reverb_HQ_By_FoxJoy.onnx', |
|
'UVR-MDX-NET_Crowd_HQ_1.onnx', |
|
'kuielab_a_vocals.onnx', |
|
'kuielab_a_other.onnx', |
|
'kuielab_a_bass.onnx', |
|
'kuielab_a_drums.onnx', |
|
'kuielab_b_vocals.onnx', |
|
'kuielab_b_other.onnx', |
|
'kuielab_b_bass.onnx', |
|
'kuielab_b_drums.onnx', |
|
] |
|
|
|
|
|
|
|
output_format = [ |
|
'wav', |
|
'flac', |
|
'mp3', |
|
] |
|
|
|
mdxnet_overlap_values = [ |
|
'0.25', |
|
'0.5', |
|
'0.75', |
|
'0.99', |
|
] |
|
|
|
|
|
|
|
def download_audio(url): |
|
ydl_opts = { |
|
'format': 'bestaudio/best', |
|
'outtmpl': 'ytdl/%(title)s.%(ext)s', |
|
'postprocessors': [{ |
|
'key': 'FFmpegExtractAudio', |
|
'preferredcodec': 'wav', |
|
'preferredquality': '192', |
|
}], |
|
} |
|
|
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
info_dict = ydl.extract_info(url, download=True) |
|
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav' |
|
sample_rate, audio_data = read(file_path) |
|
audio_array = np.asarray(audio_data, dtype=np.int16) |
|
|
|
return sample_rate, audio_array |
|
|
|
|
|
def mdxnet_separator(mdxnet_audio, mdxnet_model, mdxnet_output_format, mdxnet_segment_size, mdxnet_overlap, mdxnet_denoise): |
|
files_list = [] |
|
files_list.clear() |
|
directory = "./outputs" |
|
random_id = str(random.randint(10000, 99999)) |
|
pattern = f"{random_id}" |
|
os.makedirs("outputs", exist_ok=True) |
|
write(f'{random_id}.wav', mdxnet_audio[0], mdxnet_audio[1]) |
|
prompt = f"audio-separator {random_id}.wav --model_filename {mdxnet_model} --output_dir=./outputs --output_format={mdxnet_output_format} --normalization=0.9 --mdx_segment_size={mdxnet_segment_size} --mdx_overlap={mdxnet_overlap}" |
|
|
|
if mdxnet_denoise: |
|
prompt += " --mdx_enable_denoise" |
|
|
|
os.system(prompt) |
|
|
|
for file in os.listdir(directory): |
|
if re.search(pattern, file): |
|
files_list.append(os.path.join(directory, file)) |
|
|
|
stem1_file = files_list[0] |
|
stem2_file = files_list[1] |
|
|
|
return stem1_file, stem2_file |
|
|
|
|
|
def mdxnet_batch(path_input, path_output, model, output_format, overlap, segment_size, denoise): |
|
found_files = [] |
|
logs = [] |
|
logs.clear() |
|
|
|
extensions = (".mp3", ".wav", ".flac") |
|
|
|
for audio_files in os.listdir(path_input): |
|
if audio_files.endswith(extensions): |
|
found_files.append(audio_files) |
|
total_files = len(found_files) |
|
|
|
if total_files == 0: |
|
logs.append("No valid audio files.") |
|
yield "\n".join(logs) |
|
else: |
|
logs.append(f"{total_files} audio files found") |
|
found_files.sort() |
|
|
|
for audio_files in found_files: |
|
file_path = os.path.join(path_input, audio_files) |
|
prompt = ["audio-separator", file_path, "-m", f"{model}", f"--output_dir={path_output}", f"--output_format={output_format}", "--normalization=0.9", f"--mdx_overlap={overlap}", f"--mdx_segment_size={segment_size}"] |
|
|
|
if denoise: |
|
prompt.append("--mdx_enable_denoise") |
|
|
|
logs.append(f"Processing file: {audio_files}") |
|
yield "\n".join(logs) |
|
subprocess.run(prompt) |
|
logs.append(f"File: {audio_files} processed!") |
|
yield "\n".join(logs) |
|
|
|
|
|
with gr.Blocks(theme="Blane187/fuchsia", title="🎵 UVR5 MDX 🎵") as app: |
|
gr.Markdown("<h1> 🎵 UVR MDX 🎵 </h1>") |
|
gr.Markdown("If you liked this HF Space you can give me a ❤️") |
|
gr.Markdown("Try UVR5 UI using Colab [here](https://colab.research.google.com/github/Eddycrack864/UVR5-UI/blob/main/UVR_UI.ipynb)") |
|
with gr.Tabs(): |
|
with gr.TabItem("MDX-NET"): |
|
with gr.Row(): |
|
mdxnet_model = gr.Dropdown( |
|
label = "Select the Model", |
|
choices = mdxnet_models, |
|
interactive = True |
|
) |
|
mdxnet_output_format = gr.Dropdown( |
|
label = "Select the Output Format", |
|
choices = output_format, |
|
interactive = True |
|
) |
|
with gr.Row(): |
|
mdxnet_segment_size = gr.Slider( |
|
minimum = 32, |
|
maximum = 4000, |
|
step = 32, |
|
label = "Segment Size", |
|
info = "Larger consumes more resources, but may give better results.", |
|
value = 256, |
|
interactive = True |
|
) |
|
mdxnet_overlap = gr.Dropdown( |
|
label = "Overlap", |
|
choices = mdxnet_overlap_values, |
|
value = mdxnet_overlap_values[0], |
|
interactive = True |
|
) |
|
mdxnet_denoise = gr.Checkbox( |
|
label = "Denoise", |
|
info = "Enable denoising during separation.", |
|
value = True, |
|
interactive = True |
|
) |
|
with gr.Row(): |
|
mdxnet_audio = gr.Audio( |
|
label = "Input Audio", |
|
type = "numpy", |
|
interactive = True |
|
) |
|
with gr.Accordion("Separation by Link", open = False): |
|
with gr.Row(): |
|
mdxnet_link = gr.Textbox( |
|
label = "Link", |
|
placeholder = "Paste the link here", |
|
interactive = True |
|
) |
|
with gr.Row(): |
|
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)") |
|
with gr.Row(): |
|
mdxnet_download_button = gr.Button( |
|
"Download!", |
|
variant = "primary" |
|
) |
|
|
|
mdxnet_download_button.click(download_audio, [mdxnet_link], [mdxnet_audio]) |
|
|
|
with gr.Accordion("Batch Separation", open = False): |
|
with gr.Row(): |
|
mdxnet_input_path = gr.Textbox( |
|
label = "Input Path", |
|
placeholder = "Place the input path here", |
|
interactive = True |
|
) |
|
mdxnet_output_path = gr.Textbox( |
|
label = "Output Path", |
|
placeholder = "Place the output path here", |
|
interactive = True |
|
) |
|
with gr.Row(): |
|
mdxnet_bath_button = gr.Button("Separate!", variant = "primary") |
|
with gr.Row(): |
|
mdxnet_info = gr.Textbox( |
|
label = "Output Information", |
|
interactive = False |
|
) |
|
|
|
mdxnet_bath_button.click(mdxnet_batch, [mdxnet_input_path, mdxnet_output_path, mdxnet_model, mdxnet_output_format, mdxnet_overlap, mdxnet_segment_size, mdxnet_denoise], [mdxnet_info]) |
|
|
|
with gr.Row(): |
|
mdxnet_button = gr.Button("Separate!", variant = "primary") |
|
with gr.Row(): |
|
mdxnet_stem1 = gr.Audio( |
|
show_download_button = True, |
|
interactive = False, |
|
label = "Stem 1", |
|
type = "filepath" |
|
) |
|
mdxnet_stem2 = gr.Audio( |
|
show_download_button = True, |
|
interactive = False, |
|
label = "Stem 2", |
|
type = "filepath" |
|
) |
|
|
|
mdxnet_button.click(mdxnet_separator, [mdxnet_audio, mdxnet_model, mdxnet_output_format, mdxnet_segment_size, mdxnet_overlap, mdxnet_denoise], [mdxnet_stem1, mdxnet_stem2]) |
|
|
|
|
|
|
|
with gr.TabItem("Credits"): |
|
gr.Markdown( |
|
""" |
|
UVR5 UI created by **[Eddycrack 864](https://github.com/Eddycrack864).** Join **[AI HUB](https://discord.gg/aihub)** community. |
|
* python-audio-separator by [beveradb](https://github.com/beveradb). |
|
* Special thanks to [Ilaria](https://github.com/TheStingerX) for hosting this space and help. |
|
* Thanks to [Mikus](https://github.com/cappuch) for the help with the code. |
|
* Thanks to [Nick088](https://huggingface.co./Nick088) for the help to fix roformers. |
|
* Thanks to [yt_dlp](https://github.com/yt-dlp/yt-dlp) devs. |
|
* Separation by link source code and improvements by [Blane187](https://huggingface.co./Blane187). |
|
|
|
You can donate to the original UVR5 project here: |
|
[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/uvr5) |
|
""" |
|
) |
|
|
|
app.queue() |
|
app.launch() |