import gradio as gr import os import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, pipeline, AutoProcessor, MusicgenForConditionalGeneration, ) from scipy.io.wavfile import write import tempfile from dotenv import load_dotenv import spaces # Assumes Hugging Face Spaces library supports `@spaces.GPU` # Load environment variables (e.g., Hugging Face token) load_dotenv() hf_token = os.getenv("HF_TOKEN") # --------------------------------------------------------------------- # Load Llama 3 Pipeline with Zero GPU (Encapsulated) # --------------------------------------------------------------------- @spaces.GPU(duration=300) # Adjust GPU allocation duration def generate_script(user_prompt: str, model_id: str, token: str): try: tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) model = AutoModelForCausalLM.from_pretrained( model_id, use_auth_token=token, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, ) llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) system_prompt = ( "You are a top-tier radio imaging producer using Llama 3. " "Take the user's concept and craft a short, creative promo script." ) combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script:" result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9) return result[0]["generated_text"].split("Refined script:")[-1].strip() except Exception as e: return f"Error generating script: {e}" # --------------------------------------------------------------------- # Load MusicGen Model (Encapsulated) # --------------------------------------------------------------------- @spaces.GPU(duration=300) def generate_audio(prompt: str, audio_length: int): try: musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small") musicgen_model.to("cuda") inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt") outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length) musicgen_model.to("cpu") # Return the model to CPU sr = musicgen_model.config.audio_encoder.sampling_rate audio_data = outputs[0, 0].cpu().numpy() normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav: write(temp_wav.name, sr, normalized_audio) return temp_wav.name except Exception as e: return f"Error generating audio: {e}" # --------------------------------------------------------------------- # Gradio Interface # --------------------------------------------------------------------- def interface_generate_script(user_prompt, llama_model_id): return generate_script(user_prompt, llama_model_id, hf_token) def interface_generate_audio(script, audio_length): return generate_audio(script, audio_length) # --------------------------------------------------------------------- # Interface # --------------------------------------------------------------------- with gr.Blocks() as demo: gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)") with gr.Row(): user_prompt = gr.Textbox( label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.", ) llama_model_id = gr.Textbox( label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct" ) audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512) generate_script_button = gr.Button("Generate Script") generate_audio_button = gr.Button("Generate Audio") script_output = gr.Textbox(label="Generated Script") audio_output = gr.Audio(label="Generated Audio", type="filepath") generate_script_button.click( fn=interface_generate_script, inputs=[user_prompt, llama_model_id], outputs=script_output, ) generate_audio_button.click( fn=interface_generate_audio, inputs=[script_output, audio_length], outputs=audio_output, ) # --------------------------------------------------------------------- # Launch App # --------------------------------------------------------------------- demo.launch(debug=True)