Bils commited on
Commit
f2c044d
Β·
verified Β·
1 Parent(s): 8bd4608

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -19
app.py CHANGED
@@ -1,6 +1,8 @@
1
- import gradio as gr
2
  import os
 
3
  import torch
 
 
4
  from transformers import (
5
  AutoTokenizer,
6
  AutoModelForCausalLM,
@@ -29,6 +31,7 @@ MUSICGEN_MODELS = {}
29
  TTS_MODELS = {}
30
 
31
  def get_llama_pipeline(model_id: str, token: str):
 
32
  if model_id in LLAMA_PIPELINES:
33
  return LLAMA_PIPELINES[model_id]
34
 
@@ -45,6 +48,7 @@ def get_llama_pipeline(model_id: str, token: str):
45
  return text_pipeline
46
 
47
  def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
 
48
  if model_key in MUSICGEN_MODELS:
49
  return MUSICGEN_MODELS[model_key]
50
 
@@ -56,6 +60,7 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
56
  return model, processor
57
 
58
  def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
 
59
  if model_name in TTS_MODELS:
60
  return TTS_MODELS[model_name]
61
  tts_model = TTS(model_name)
@@ -67,12 +72,21 @@ def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
67
  # -----------------------------------------------------------
68
  @spaces.GPU(duration=100)
69
  def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
 
 
 
 
70
  try:
71
  text_pipeline = get_llama_pipeline(model_id, token)
72
- system_prompt = f"""You are a professional audio producer creating {duration}-second content. Generate:
73
- 1. Voice script (clear and concise)
74
- 2. Sound design suggestions (specific effects)
75
- 3. Music style recommendations (genre, tempo)"""
 
 
 
 
 
76
 
77
  full_prompt = f"{system_prompt}\nClient brief: {user_prompt}\nOutput:"
78
 
@@ -87,7 +101,7 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
87
 
88
  generated_text = result[0]["generated_text"].split("Output:")[-1].strip()
89
 
90
- # Parse sections
91
  sections = {
92
  "Voice-Over Script:": "",
93
  "Sound Design Suggestions:": "",
@@ -99,7 +113,9 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
99
  for section in sections:
100
  if section in line:
101
  current_section = section
 
102
  line = line.replace(section, '').strip()
 
103
  if current_section:
104
  sections[current_section] += line + '\n'
105
 
@@ -114,19 +130,41 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
114
 
115
  @spaces.GPU(duration=100)
116
  def generate_voice(script: str, tts_model_name: str):
 
 
 
117
  try:
118
  if not script.strip():
119
  return None
120
  tts_model = get_tts_model(tts_model_name)
121
- output_path = f"{tempfile.gettempdir()}/voice_temp.wav"
 
122
  tts_model.tts_to_file(text=script, file_path=output_path)
123
  return output_path
124
  except Exception as e:
125
  print(f"Voice generation error: {e}")
126
  return None
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  @spaces.GPU(duration=100)
129
  def generate_music(prompt: str, audio_length: int):
 
 
 
130
  try:
131
  model, processor = get_musicgen_model()
132
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -135,9 +173,15 @@ def generate_music(prompt: str, audio_length: int):
135
  with torch.inference_mode():
136
  outputs = model.generate(**inputs, max_new_tokens=audio_length)
137
 
 
138
  audio_data = outputs[0, 0].cpu().numpy()
139
- normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
140
- output_path = f"{tempfile.gettempdir()}/music_temp.wav"
 
 
 
 
 
141
  write(output_path, 44100, normalized_audio)
142
  return output_path
143
  except Exception as e:
@@ -146,24 +190,27 @@ def generate_music(prompt: str, audio_length: int):
146
 
147
  @spaces.GPU(duration=100)
148
  def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int):
 
 
 
 
149
  try:
150
  voice = AudioSegment.from_wav(voice_path)
151
  music = AudioSegment.from_wav(music_path)
152
 
153
- # Adjust music length
154
  if len(music) < len(voice):
155
  loops_needed = (len(voice) // len(music)) + 1
156
  music = music * loops_needed
157
  music = music[:len(voice)]
158
 
159
- # Ducking effect
160
  if ducking:
161
  ducked_music = music - duck_level
162
  final_audio = ducked_music.overlay(voice)
163
  else:
164
  final_audio = music.overlay(voice)
165
 
166
- output_path = f"{tempfile.gettempdir()}/final_mix.wav"
167
  final_audio.export(output_path, format="wav")
168
  return output_path
169
  except Exception as e:
@@ -268,7 +315,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
268
 
269
  # Main Workflow Tabs
270
  with gr.Tabs(elem_classes="tab-nav"):
271
- # Script Generation
272
  with gr.Tab("πŸ“ Script Design", elem_classes="tab-button"):
273
  with gr.Row(equal_height=False):
274
  with gr.Column(scale=2):
@@ -301,7 +348,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
301
  sound_design_output = gr.Textbox(label="Sound Design", lines=3)
302
  music_suggestion_output = gr.Textbox(label="Music Style", lines=3)
303
 
304
- # Voice Production
305
  with gr.Tab("πŸŽ™οΈ Voice Production", elem_classes="tab-button"):
306
  with gr.Row():
307
  with gr.Column(scale=1):
@@ -327,7 +374,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
327
  waveform_options={"show_controls": True}
328
  )
329
 
330
- # Music Production
331
  with gr.Tab("🎡 Music Design", elem_classes="tab-button"):
332
  with gr.Row():
333
  with gr.Column(scale=1):
@@ -349,7 +396,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
349
  waveform_options={"show_controls": True}
350
  )
351
 
352
- # Final Mix
353
  with gr.Tab("πŸ”Š Final Mix", elem_classes="tab-button"):
354
  with gr.Row():
355
  with gr.Column(scale=1):
@@ -375,7 +422,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
375
  waveform_options={"show_controls": True}
376
  )
377
 
378
- # Footer
379
  with gr.Column(elem_classes="output-card"):
380
  gr.Markdown("""
381
  <div style="text-align: center; padding: 1.5em 0;">
@@ -391,13 +438,26 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
391
  </p>
392
  """)
393
 
 
394
  # Event Handling
 
 
 
 
395
  generate_btn.click(
396
  generate_script,
397
- inputs=[user_prompt, llama_model_id, gr.Textbox(HF_TOKEN, visible=False), duration],
398
  outputs=[script_output, sound_design_output, music_suggestion_output]
399
  )
400
 
 
 
 
 
 
 
 
 
401
  voice_generate_btn.click(
402
  generate_voice,
403
  inputs=[script_output, tts_model],
@@ -417,4 +477,4 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
417
  )
418
 
419
  if __name__ == "__main__":
420
- demo.launch(debug=True)
 
 
1
  import os
2
+ import uuid
3
  import torch
4
+ import numpy as np
5
+ import gradio as gr
6
  from transformers import (
7
  AutoTokenizer,
8
  AutoModelForCausalLM,
 
31
  TTS_MODELS = {}
32
 
33
  def get_llama_pipeline(model_id: str, token: str):
34
+ """Load and cache the LLaMA text-generation pipeline."""
35
  if model_id in LLAMA_PIPELINES:
36
  return LLAMA_PIPELINES[model_id]
37
 
 
48
  return text_pipeline
49
 
50
  def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
51
+ """Load and cache the MusicGen model and processor."""
52
  if model_key in MUSICGEN_MODELS:
53
  return MUSICGEN_MODELS[model_key]
54
 
 
60
  return model, processor
61
 
62
  def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
63
+ """Load and cache the TTS model."""
64
  if model_name in TTS_MODELS:
65
  return TTS_MODELS[model_name]
66
  tts_model = TTS(model_name)
 
72
  # -----------------------------------------------------------
73
  @spaces.GPU(duration=100)
74
  def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
75
+ """
76
+ Generate a professional promo script including a voice-over script,
77
+ sound design suggestions, and music recommendations.
78
+ """
79
  try:
80
  text_pipeline = get_llama_pipeline(model_id, token)
81
+ # Updated prompt to instruct the model to output sections with explicit headers.
82
+ system_prompt = (
83
+ f"You are a professional audio producer creating {duration}-second content. "
84
+ "Please generate the following three sections exactly as shown:\n\n"
85
+ "Voice-Over Script: [A clear and concise script for the voiceover.]\n"
86
+ "Sound Design Suggestions: [Specific ideas, effects, and ambience recommendations.]\n"
87
+ "Music Suggestions: [Recommendations for music style, genre, and tempo.]\n\n"
88
+ "Make sure each section starts with its header exactly."
89
+ )
90
 
91
  full_prompt = f"{system_prompt}\nClient brief: {user_prompt}\nOutput:"
92
 
 
101
 
102
  generated_text = result[0]["generated_text"].split("Output:")[-1].strip()
103
 
104
+ # Parse the output into the three expected sections.
105
  sections = {
106
  "Voice-Over Script:": "",
107
  "Sound Design Suggestions:": "",
 
113
  for section in sections:
114
  if section in line:
115
  current_section = section
116
+ # Remove header from the line.
117
  line = line.replace(section, '').strip()
118
+ break
119
  if current_section:
120
  sections[current_section] += line + '\n'
121
 
 
130
 
131
  @spaces.GPU(duration=100)
132
  def generate_voice(script: str, tts_model_name: str):
133
+ """
134
+ Generate full voice-over audio from the provided script using a TTS model.
135
+ """
136
  try:
137
  if not script.strip():
138
  return None
139
  tts_model = get_tts_model(tts_model_name)
140
+ # Create a unique temporary file name for the output.
141
+ output_path = os.path.join(tempfile.gettempdir(), f"voice_{uuid.uuid4().hex}.wav")
142
  tts_model.tts_to_file(text=script, file_path=output_path)
143
  return output_path
144
  except Exception as e:
145
  print(f"Voice generation error: {e}")
146
  return None
147
 
148
+ @spaces.GPU(duration=100)
149
+ def generate_voice_preview(script: str, tts_model_name: str):
150
+ """
151
+ Generate a short preview of the voice-over by taking the first 100 words.
152
+ """
153
+ try:
154
+ if not script.strip():
155
+ return None
156
+ words = script.split()
157
+ preview_text = ' '.join(words[:100]) if len(words) > 100 else script
158
+ return generate_voice(preview_text, tts_model_name)
159
+ except Exception as e:
160
+ print(f"Voice preview error: {e}")
161
+ return None
162
+
163
  @spaces.GPU(duration=100)
164
  def generate_music(prompt: str, audio_length: int):
165
+ """
166
+ Generate music audio from a text prompt using the MusicGen model.
167
+ """
168
  try:
169
  model, processor = get_musicgen_model()
170
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
173
  with torch.inference_mode():
174
  outputs = model.generate(**inputs, max_new_tokens=audio_length)
175
 
176
+ # Assuming outputs[0, 0] holds the generated audio waveform.
177
  audio_data = outputs[0, 0].cpu().numpy()
178
+ # Prevent division by zero during normalization.
179
+ max_val = np.max(np.abs(audio_data))
180
+ if max_val == 0:
181
+ normalized_audio = audio_data.astype("int16")
182
+ else:
183
+ normalized_audio = (audio_data / max_val * 32767).astype("int16")
184
+ output_path = os.path.join(tempfile.gettempdir(), f"music_{uuid.uuid4().hex}.wav")
185
  write(output_path, 44100, normalized_audio)
186
  return output_path
187
  except Exception as e:
 
190
 
191
  @spaces.GPU(duration=100)
192
  def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int):
193
+ """
194
+ Blend the generated voice and music audio files.
195
+ If ducking is enabled, lower the music volume during the voice segments.
196
+ """
197
  try:
198
  voice = AudioSegment.from_wav(voice_path)
199
  music = AudioSegment.from_wav(music_path)
200
 
201
+ # Loop the music track if it's shorter than the voice track.
202
  if len(music) < len(voice):
203
  loops_needed = (len(voice) // len(music)) + 1
204
  music = music * loops_needed
205
  music = music[:len(voice)]
206
 
 
207
  if ducking:
208
  ducked_music = music - duck_level
209
  final_audio = ducked_music.overlay(voice)
210
  else:
211
  final_audio = music.overlay(voice)
212
 
213
+ output_path = os.path.join(tempfile.gettempdir(), f"final_mix_{uuid.uuid4().hex}.wav")
214
  final_audio.export(output_path, format="wav")
215
  return output_path
216
  except Exception as e:
 
315
 
316
  # Main Workflow Tabs
317
  with gr.Tabs(elem_classes="tab-nav"):
318
+ # Script Generation Tab
319
  with gr.Tab("πŸ“ Script Design", elem_classes="tab-button"):
320
  with gr.Row(equal_height=False):
321
  with gr.Column(scale=2):
 
348
  sound_design_output = gr.Textbox(label="Sound Design", lines=3)
349
  music_suggestion_output = gr.Textbox(label="Music Style", lines=3)
350
 
351
+ # Voice Production Tab
352
  with gr.Tab("πŸŽ™οΈ Voice Production", elem_classes="tab-button"):
353
  with gr.Row():
354
  with gr.Column(scale=1):
 
374
  waveform_options={"show_controls": True}
375
  )
376
 
377
+ # Music Production Tab
378
  with gr.Tab("🎡 Music Design", elem_classes="tab-button"):
379
  with gr.Row():
380
  with gr.Column(scale=1):
 
396
  waveform_options={"show_controls": True}
397
  )
398
 
399
+ # Final Mix Tab
400
  with gr.Tab("πŸ”Š Final Mix", elem_classes="tab-button"):
401
  with gr.Row():
402
  with gr.Column(scale=1):
 
422
  waveform_options={"show_controls": True}
423
  )
424
 
425
+ # Footer Section
426
  with gr.Column(elem_classes="output-card"):
427
  gr.Markdown("""
428
  <div style="text-align: center; padding: 1.5em 0;">
 
438
  </p>
439
  """)
440
 
441
+ # -----------------------------------------------------------
442
  # Event Handling
443
+ # -----------------------------------------------------------
444
+ # Hidden textbox for HF_TOKEN (its value is set via the environment variable).
445
+ hf_token_hidden = gr.Textbox(value=HF_TOKEN, visible=False)
446
+
447
  generate_btn.click(
448
  generate_script,
449
+ inputs=[user_prompt, llama_model_id, hf_token_hidden, duration],
450
  outputs=[script_output, sound_design_output, music_suggestion_output]
451
  )
452
 
453
+ # Voice preview: generates a trimmed version of the script.
454
+ voice_preview_btn.click(
455
+ generate_voice_preview,
456
+ inputs=[script_output, tts_model],
457
+ outputs=voice_audio
458
+ )
459
+
460
+ # Full voice generation using the complete script.
461
  voice_generate_btn.click(
462
  generate_voice,
463
  inputs=[script_output, tts_model],
 
477
  )
478
 
479
  if __name__ == "__main__":
480
+ demo.launch(debug=True)