Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,15 +8,17 @@ from transformers import (
|
|
8 |
AutoProcessor,
|
9 |
MusicgenForConditionalGeneration
|
10 |
)
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
16 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
17 |
try:
|
18 |
-
if not torch.cuda.is_available():
|
19 |
-
raise RuntimeError("ZeroGPU is not properly initialized or GPU is unavailable.")
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
21 |
model = AutoModelForCausalLM.from_pretrained(
|
22 |
model_id,
|
@@ -27,94 +29,41 @@ def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
|
27 |
)
|
28 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
29 |
except Exception as e:
|
30 |
-
return
|
31 |
-
|
32 |
-
# ---------------------------------------------------------------------
|
33 |
-
# Generate Radio Script
|
34 |
-
# ---------------------------------------------------------------------
|
35 |
-
def generate_script(user_input: str, pipeline_llama):
|
36 |
-
try:
|
37 |
-
system_prompt = (
|
38 |
-
"You are a top-tier radio imaging producer using Llama 3. "
|
39 |
-
"Take the user's concept and craft a short, creative promo script."
|
40 |
-
)
|
41 |
-
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
|
42 |
-
result = pipeline_llama(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
|
43 |
-
return result[0]['generated_text'].split("Refined script:")[-1].strip()
|
44 |
-
except Exception as e:
|
45 |
-
return f"Error generating script: {e}"
|
46 |
-
|
47 |
-
# ---------------------------------------------------------------------
|
48 |
-
# Load MusicGen Model
|
49 |
-
# ---------------------------------------------------------------------
|
50 |
-
def load_musicgen_model():
|
51 |
-
try:
|
52 |
-
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
53 |
-
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
54 |
-
return model, processor
|
55 |
-
except Exception as e:
|
56 |
-
return None, str(e)
|
57 |
|
58 |
-
|
59 |
-
# Generate Audio
|
60 |
-
# ---------------------------------------------------------------------
|
61 |
def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor):
|
62 |
try:
|
|
|
63 |
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
|
64 |
outputs = mg_model.generate(**inputs, max_new_tokens=audio_length)
|
|
|
|
|
65 |
sr = mg_model.config.audio_encoder.sampling_rate
|
66 |
audio_data = outputs[0, 0].cpu().numpy()
|
67 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
68 |
-
output_file = "radio_jingle.wav"
|
69 |
-
wav.write(output_file, rate=sr, data=normalized_audio)
|
70 |
-
return sr, normalized_audio
|
71 |
-
except Exception as e:
|
72 |
-
return str(e)
|
73 |
-
|
74 |
-
# ---------------------------------------------------------------------
|
75 |
-
# Gradio Interface
|
76 |
-
# ---------------------------------------------------------------------
|
77 |
-
def radio_imaging_app(user_prompt, llama_model_id, hf_token, audio_length):
|
78 |
-
# Load Llama 3 Pipeline with Zero GPU
|
79 |
-
pipeline_llama = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
|
80 |
-
if isinstance(pipeline_llama, str):
|
81 |
-
return pipeline_llama, None
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
if isinstance(mg_processor, str):
|
89 |
-
return script, mg_processor
|
90 |
-
|
91 |
-
# Generate Audio
|
92 |
-
audio_data = generate_audio(script, audio_length, mg_model, mg_processor)
|
93 |
-
if isinstance(audio_data, str):
|
94 |
-
return script, audio_data
|
95 |
-
|
96 |
-
return script, audio_data
|
97 |
|
98 |
-
# ---------------------------------------------------------------------
|
99 |
-
# Interface
|
100 |
-
# ---------------------------------------------------------------------
|
101 |
with gr.Blocks() as demo:
|
102 |
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
108 |
|
109 |
generate_button = gr.Button("Generate Promo Script and Audio")
|
110 |
script_output = gr.Textbox(label="Generated Script")
|
111 |
-
audio_output = gr.Audio(label="Generated Audio", type="
|
112 |
|
113 |
-
generate_button.click(
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
|
117 |
-
# ---------------------------------------------------------------------
|
118 |
-
# Launch App
|
119 |
-
# ---------------------------------------------------------------------
|
120 |
demo.launch(debug=True)
|
|
|
8 |
AutoProcessor,
|
9 |
MusicgenForConditionalGeneration
|
10 |
)
|
11 |
+
from scipy.io.wavfile import write
|
12 |
+
import tempfile
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
import spaces
|
15 |
|
16 |
+
load_dotenv()
|
17 |
+
hf_token = os.getenv("HF_TOKEN")
|
18 |
+
|
19 |
+
@spaces.GPU(duration=120)
|
20 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
21 |
try:
|
|
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
24 |
model_id,
|
|
|
29 |
)
|
30 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
31 |
except Exception as e:
|
32 |
+
return str(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
@spaces.GPU(duration=120)
|
|
|
|
|
35 |
def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor):
|
36 |
try:
|
37 |
+
mg_model.to("cuda")
|
38 |
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
|
39 |
outputs = mg_model.generate(**inputs, max_new_tokens=audio_length)
|
40 |
+
mg_model.to("cpu")
|
41 |
+
|
42 |
sr = mg_model.config.audio_encoder.sampling_rate
|
43 |
audio_data = outputs[0, 0].cpu().numpy()
|
44 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
47 |
+
write(temp_wav.name, sr, normalized_audio)
|
48 |
+
return temp_wav.name
|
49 |
+
except Exception as e:
|
50 |
+
return f"Error generating audio: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
|
|
|
|
|
|
52 |
with gr.Blocks() as demo:
|
53 |
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
|
54 |
+
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
|
55 |
+
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-70B")
|
56 |
+
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
|
57 |
+
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
|
|
58 |
|
59 |
generate_button = gr.Button("Generate Promo Script and Audio")
|
60 |
script_output = gr.Textbox(label="Generated Script")
|
61 |
+
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
62 |
|
63 |
+
generate_button.click(
|
64 |
+
fn=lambda prompt, model_id, token, length: (prompt, None), # Simplify for demo
|
65 |
+
inputs=[user_prompt, llama_model_id, hf_token, audio_length],
|
66 |
+
outputs=[script_output, audio_output]
|
67 |
+
)
|
68 |
|
|
|
|
|
|
|
69 |
demo.launch(debug=True)
|