Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -39,6 +39,7 @@ def clean_text(text: str) -> str:
|
|
39 |
"""
|
40 |
Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
|
41 |
"""
|
|
|
42 |
return re.sub(r'\*', '', text)
|
43 |
|
44 |
# ---------------------------------------------------------------------
|
@@ -50,6 +51,7 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
50 |
"""
|
51 |
if model_id in LLAMA_PIPELINES:
|
52 |
return LLAMA_PIPELINES[model_id]
|
|
|
53 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
54 |
model = AutoModelForCausalLM.from_pretrained(
|
55 |
model_id,
|
@@ -62,6 +64,7 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
62 |
LLAMA_PIPELINES[model_id] = text_pipeline
|
63 |
return text_pipeline
|
64 |
|
|
|
65 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
66 |
"""
|
67 |
Returns a cached MusicGen model if available; otherwise, loads it.
|
@@ -69,23 +72,28 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
69 |
"""
|
70 |
if model_key in MUSICGEN_MODELS:
|
71 |
return MUSICGEN_MODELS[model_key]
|
|
|
72 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
73 |
processor = AutoProcessor.from_pretrained(model_key)
|
|
|
74 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
75 |
model.to(device)
|
76 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
77 |
return model, processor
|
78 |
|
|
|
79 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
80 |
"""
|
81 |
Returns a cached TTS model if available; otherwise, loads it.
|
82 |
"""
|
83 |
if model_name in TTS_MODELS:
|
84 |
return TTS_MODELS[model_name]
|
|
|
85 |
tts_model = TTS(model_name)
|
86 |
TTS_MODELS[model_name] = tts_model
|
87 |
return tts_model
|
88 |
|
|
|
89 |
# ---------------------------------------------------------------------
|
90 |
# Script Generation Function
|
91 |
# ---------------------------------------------------------------------
|
@@ -93,10 +101,11 @@ def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
|
93 |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
94 |
"""
|
95 |
Generates a script, sound design suggestions, and music ideas from a user prompt.
|
96 |
-
Returns a tuple: (voice_script, sound_design, music_suggestions).
|
97 |
"""
|
98 |
try:
|
99 |
text_pipeline = get_llama_pipeline(model_id, token)
|
|
|
100 |
system_prompt = (
|
101 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
102 |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
|
@@ -118,10 +127,12 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
118 |
if "Output:" in generated_text:
|
119 |
generated_text = generated_text.split("Output:")[-1].strip()
|
120 |
|
|
|
121 |
voice_script = "No voice-over script found."
|
122 |
sound_design = "No sound design suggestions found."
|
123 |
music_suggestions = "No music suggestions found."
|
124 |
|
|
|
125 |
if "Voice-Over Script:" in generated_text:
|
126 |
parts = generated_text.split("Voice-Over Script:")
|
127 |
voice_script_part = parts[1]
|
@@ -130,6 +141,7 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
130 |
else:
|
131 |
voice_script = voice_script_part.strip()
|
132 |
|
|
|
133 |
if "Sound Design Suggestions:" in generated_text:
|
134 |
parts = generated_text.split("Sound Design Suggestions:")
|
135 |
sound_design_part = parts[1]
|
@@ -138,6 +150,7 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
138 |
else:
|
139 |
sound_design = sound_design_part.strip()
|
140 |
|
|
|
141 |
if "Music Suggestions:" in generated_text:
|
142 |
parts = generated_text.split("Music Suggestions:")
|
143 |
music_suggestions = parts[1].strip()
|
@@ -147,26 +160,34 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
147 |
except Exception as e:
|
148 |
return f"Error generating script: {e}", "", ""
|
149 |
|
|
|
150 |
# ---------------------------------------------------------------------
|
151 |
# Voice-Over Generation Function
|
152 |
# ---------------------------------------------------------------------
|
153 |
@spaces.GPU(duration=100)
|
154 |
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
155 |
"""
|
156 |
-
Generates a voice-over from the provided script using Coqui TTS.
|
157 |
Returns the file path to the generated .wav file.
|
158 |
"""
|
159 |
try:
|
160 |
if not script.strip():
|
161 |
return "Error: No script provided."
|
|
|
|
|
162 |
cleaned_script = clean_text(script)
|
|
|
163 |
tts_model = get_tts_model(tts_model_name)
|
|
|
|
|
164 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
165 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
166 |
return output_path
|
|
|
167 |
except Exception as e:
|
168 |
return f"Error generating voice: {e}"
|
169 |
|
|
|
170 |
# ---------------------------------------------------------------------
|
171 |
# Music Generation Function
|
172 |
# ---------------------------------------------------------------------
|
@@ -184,28 +205,33 @@ def generate_music(prompt: str, audio_length: int):
|
|
184 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
185 |
|
186 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
187 |
-
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
|
188 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
189 |
|
190 |
with torch.inference_mode():
|
191 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
192 |
|
193 |
audio_data = outputs[0, 0].cpu().numpy()
|
194 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
|
|
195 |
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
|
196 |
write(output_path, 44100, normalized_audio)
|
|
|
197 |
return output_path
|
198 |
|
199 |
except Exception as e:
|
200 |
return f"Error generating music: {e}"
|
201 |
|
|
|
202 |
# ---------------------------------------------------------------------
|
203 |
-
# Audio Blending
|
204 |
# ---------------------------------------------------------------------
|
205 |
@spaces.GPU(duration=100)
|
206 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
207 |
"""
|
208 |
Blends two audio files (voice and music).
|
|
|
|
|
|
|
209 |
Returns the file path to the blended .wav file.
|
210 |
"""
|
211 |
try:
|
@@ -214,19 +240,27 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int
|
|
214 |
|
215 |
voice = AudioSegment.from_wav(voice_path)
|
216 |
music = AudioSegment.from_wav(music_path)
|
217 |
-
voice_len = len(voice)
|
218 |
-
music_len = len(music)
|
219 |
|
|
|
|
|
|
|
|
|
220 |
if music_len < voice_len:
|
221 |
looped_music = AudioSegment.empty()
|
222 |
while len(looped_music) < voice_len:
|
223 |
looped_music += music
|
224 |
music = looped_music
|
225 |
|
|
|
226 |
if len(music) > voice_len:
|
227 |
music = music[:voice_len]
|
228 |
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
230 |
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
|
231 |
final_audio.export(output_path, format="wav")
|
232 |
return output_path
|
@@ -234,29 +268,12 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int
|
|
234 |
except Exception as e:
|
235 |
return f"Error blending audio: {e}"
|
236 |
|
237 |
-
# ---------------------------------------------------------------------
|
238 |
-
# Agent Function: Orchestrate the Full Workflow
|
239 |
-
# ---------------------------------------------------------------------
|
240 |
-
@spaces.GPU(duration=400)
|
241 |
-
def run_agent(user_prompt: str, llama_model_id: str, duration: int, tts_model_name: str, music_length: int, ducking: bool, duck_level: int):
|
242 |
-
"""
|
243 |
-
Runs the full workflow as an agent:
|
244 |
-
1. Generates a script (voice-over, sound design, and music suggestions).
|
245 |
-
2. Synthesizes a voice-over.
|
246 |
-
3. Generates a music track.
|
247 |
-
4. Blends the voice and music.
|
248 |
-
Returns all generated components.
|
249 |
-
"""
|
250 |
-
voice_script, sound_design, music_suggestions = generate_script(user_prompt, llama_model_id, HF_TOKEN, duration)
|
251 |
-
voice_file = generate_voice(voice_script, tts_model_name)
|
252 |
-
music_file = generate_music(music_suggestions, music_length)
|
253 |
-
blended_file = blend_audio(voice_file, music_file, ducking, duck_level)
|
254 |
-
return voice_script, sound_design, music_suggestions, voice_file, music_file, blended_file
|
255 |
|
256 |
# ---------------------------------------------------------------------
|
257 |
# Gradio Interface with Enhanced UI
|
258 |
# ---------------------------------------------------------------------
|
259 |
with gr.Blocks(css="""
|
|
|
260 |
body {
|
261 |
background: linear-gradient(135deg, #1d1f21, #3a3d41);
|
262 |
color: #f0f0f0;
|
@@ -303,88 +320,109 @@ with gr.Blocks(css="""
|
|
303 |
|
304 |
gr.Markdown("""
|
305 |
Welcome to **AI Promo Studio**! This platform leverages state-of-the-art AI models to help you generate:
|
306 |
-
|
307 |
-
-
|
308 |
-
-
|
309 |
-
-
|
|
|
310 |
""")
|
311 |
|
312 |
with gr.Tabs():
|
313 |
-
#
|
314 |
with gr.Tab("📝 Script Generation"):
|
315 |
with gr.Row():
|
316 |
-
user_prompt = gr.Textbox(
|
|
|
|
|
|
|
|
|
317 |
with gr.Row():
|
318 |
-
llama_model_id = gr.Textbox(
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
generate_script_button = gr.Button("Generate Script", variant="primary")
|
321 |
-
script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
|
322 |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
323 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
324 |
-
generate_script_button.click(fn=lambda prompt, model, dur: generate_script(prompt, model, HF_TOKEN, dur),
|
325 |
-
inputs=[user_prompt, llama_model_id, duration],
|
326 |
-
outputs=[script_output, sound_design_output, music_suggestion_output])
|
327 |
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
with gr.Tab("🎤 Voice Synthesis"):
|
330 |
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
|
331 |
-
selected_tts_model = gr.Dropdown(
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
|
335 |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
336 |
-
generate_voice_button.click(fn=lambda script, tts: generate_voice(script, tts),
|
337 |
-
inputs=[script_output, selected_tts_model],
|
338 |
-
outputs=voice_audio_output)
|
339 |
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
with gr.Tab("🎶 Music Production"):
|
342 |
-
gr.Markdown("Generate a custom music track using the MusicGen Large model.")
|
343 |
-
audio_length = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
generate_music_button = gr.Button("Generate Music", variant="primary")
|
345 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
346 |
-
generate_music_button.click(fn=lambda sugg, length: generate_music(sugg, length),
|
347 |
-
inputs=[music_suggestion_output, audio_length],
|
348 |
-
outputs=[music_output])
|
349 |
|
350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
with gr.Tab("🎚️ Audio Blending"):
|
352 |
-
gr.Markdown("Blend your voice-over and music track. Enable ducking to lower the music during voice segments.")
|
353 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
354 |
-
duck_level_slider = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
blend_button = gr.Button("Blend Voice + Music", variant="primary")
|
356 |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
357 |
-
blend_button.click(fn=blend_audio,
|
358 |
-
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|
359 |
-
outputs=blended_output)
|
360 |
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
with gr.Row():
|
367 |
-
agent_llama_model_id = gr.Textbox(label="LLaMA Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct", placeholder="Enter a valid Hugging Face model ID")
|
368 |
-
agent_duration = gr.Slider(label="Promo Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
|
369 |
-
with gr.Row():
|
370 |
-
agent_tts_model = gr.Dropdown(label="TTS Model",
|
371 |
-
choices=["tts_models/en/ljspeech/tacotron2-DDC", "tts_models/en/ljspeech/vits", "tts_models/en/sam/tacotron-DDC"],
|
372 |
-
value="tts_models/en/ljspeech/tacotron2-DDC", multiselect=False)
|
373 |
-
agent_music_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
374 |
-
with gr.Row():
|
375 |
-
agent_ducking = gr.Checkbox(label="Enable Ducking?", value=True)
|
376 |
-
agent_duck_level = gr.Slider(label="Ducking Level (dB attenuation)", minimum=0, maximum=20, step=1, value=10)
|
377 |
-
agent_run_button = gr.Button("Run Agent", variant="primary")
|
378 |
-
agent_script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
|
379 |
-
agent_sound_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
380 |
-
agent_music_suggestions_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
381 |
-
agent_voice_audio = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
382 |
-
agent_music_audio = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
383 |
-
agent_blended_audio = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
384 |
-
agent_run_button.click(fn=run_agent,
|
385 |
-
inputs=[agent_prompt, agent_llama_model_id, agent_duration, agent_tts_model, agent_music_length, agent_ducking, agent_duck_level],
|
386 |
-
outputs=[agent_script_output, agent_sound_output, agent_music_suggestions_output, agent_voice_audio, agent_music_audio, agent_blended_audio])
|
387 |
|
|
|
388 |
gr.Markdown("""
|
389 |
<div class="footer">
|
390 |
<hr>
|
@@ -394,6 +432,7 @@ with gr.Blocks(css="""
|
|
394 |
</div>
|
395 |
""")
|
396 |
|
|
|
397 |
gr.HTML("""
|
398 |
<div style="text-align: center; margin-top: 1rem;">
|
399 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
|
|
|
39 |
"""
|
40 |
Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
|
41 |
"""
|
42 |
+
# Remove all asterisks. You can add more cleaning steps here as needed.
|
43 |
return re.sub(r'\*', '', text)
|
44 |
|
45 |
# ---------------------------------------------------------------------
|
|
|
51 |
"""
|
52 |
if model_id in LLAMA_PIPELINES:
|
53 |
return LLAMA_PIPELINES[model_id]
|
54 |
+
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
56 |
model = AutoModelForCausalLM.from_pretrained(
|
57 |
model_id,
|
|
|
64 |
LLAMA_PIPELINES[model_id] = text_pipeline
|
65 |
return text_pipeline
|
66 |
|
67 |
+
|
68 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
69 |
"""
|
70 |
Returns a cached MusicGen model if available; otherwise, loads it.
|
|
|
72 |
"""
|
73 |
if model_key in MUSICGEN_MODELS:
|
74 |
return MUSICGEN_MODELS[model_key]
|
75 |
+
|
76 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
77 |
processor = AutoProcessor.from_pretrained(model_key)
|
78 |
+
|
79 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
80 |
model.to(device)
|
81 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
82 |
return model, processor
|
83 |
|
84 |
+
|
85 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
86 |
"""
|
87 |
Returns a cached TTS model if available; otherwise, loads it.
|
88 |
"""
|
89 |
if model_name in TTS_MODELS:
|
90 |
return TTS_MODELS[model_name]
|
91 |
+
|
92 |
tts_model = TTS(model_name)
|
93 |
TTS_MODELS[model_name] = tts_model
|
94 |
return tts_model
|
95 |
|
96 |
+
|
97 |
# ---------------------------------------------------------------------
|
98 |
# Script Generation Function
|
99 |
# ---------------------------------------------------------------------
|
|
|
101 |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
102 |
"""
|
103 |
Generates a script, sound design suggestions, and music ideas from a user prompt.
|
104 |
+
Returns a tuple of strings: (voice_script, sound_design, music_suggestions).
|
105 |
"""
|
106 |
try:
|
107 |
text_pipeline = get_llama_pipeline(model_id, token)
|
108 |
+
|
109 |
system_prompt = (
|
110 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
111 |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
|
|
|
127 |
if "Output:" in generated_text:
|
128 |
generated_text = generated_text.split("Output:")[-1].strip()
|
129 |
|
130 |
+
# Default placeholders
|
131 |
voice_script = "No voice-over script found."
|
132 |
sound_design = "No sound design suggestions found."
|
133 |
music_suggestions = "No music suggestions found."
|
134 |
|
135 |
+
# Voice-Over Script
|
136 |
if "Voice-Over Script:" in generated_text:
|
137 |
parts = generated_text.split("Voice-Over Script:")
|
138 |
voice_script_part = parts[1]
|
|
|
141 |
else:
|
142 |
voice_script = voice_script_part.strip()
|
143 |
|
144 |
+
# Sound Design
|
145 |
if "Sound Design Suggestions:" in generated_text:
|
146 |
parts = generated_text.split("Sound Design Suggestions:")
|
147 |
sound_design_part = parts[1]
|
|
|
150 |
else:
|
151 |
sound_design = sound_design_part.strip()
|
152 |
|
153 |
+
# Music Suggestions
|
154 |
if "Music Suggestions:" in generated_text:
|
155 |
parts = generated_text.split("Music Suggestions:")
|
156 |
music_suggestions = parts[1].strip()
|
|
|
160 |
except Exception as e:
|
161 |
return f"Error generating script: {e}", "", ""
|
162 |
|
163 |
+
|
164 |
# ---------------------------------------------------------------------
|
165 |
# Voice-Over Generation Function
|
166 |
# ---------------------------------------------------------------------
|
167 |
@spaces.GPU(duration=100)
|
168 |
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
169 |
"""
|
170 |
+
Generates a voice-over from the provided script using the Coqui TTS model.
|
171 |
Returns the file path to the generated .wav file.
|
172 |
"""
|
173 |
try:
|
174 |
if not script.strip():
|
175 |
return "Error: No script provided."
|
176 |
+
|
177 |
+
# Clean the script to remove special characters (e.g., asterisks) that may produce warnings
|
178 |
cleaned_script = clean_text(script)
|
179 |
+
|
180 |
tts_model = get_tts_model(tts_model_name)
|
181 |
+
|
182 |
+
# Generate and save voice
|
183 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
184 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
185 |
return output_path
|
186 |
+
|
187 |
except Exception as e:
|
188 |
return f"Error generating voice: {e}"
|
189 |
|
190 |
+
|
191 |
# ---------------------------------------------------------------------
|
192 |
# Music Generation Function
|
193 |
# ---------------------------------------------------------------------
|
|
|
205 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
206 |
|
207 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
208 |
+
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
|
|
|
209 |
|
210 |
with torch.inference_mode():
|
211 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
212 |
|
213 |
audio_data = outputs[0, 0].cpu().numpy()
|
214 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
215 |
+
|
216 |
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
|
217 |
write(output_path, 44100, normalized_audio)
|
218 |
+
|
219 |
return output_path
|
220 |
|
221 |
except Exception as e:
|
222 |
return f"Error generating music: {e}"
|
223 |
|
224 |
+
|
225 |
# ---------------------------------------------------------------------
|
226 |
+
# Audio Blending with Duration Sync & Ducking
|
227 |
# ---------------------------------------------------------------------
|
228 |
@spaces.GPU(duration=100)
|
229 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
230 |
"""
|
231 |
Blends two audio files (voice and music).
|
232 |
+
1. If music < voice, loops the music until it meets/exceeds the voice duration.
|
233 |
+
2. If music > voice, trims music to the voice duration.
|
234 |
+
3. If ducking=True, the music is attenuated by 'duck_level' dB while the voice is playing.
|
235 |
Returns the file path to the blended .wav file.
|
236 |
"""
|
237 |
try:
|
|
|
240 |
|
241 |
voice = AudioSegment.from_wav(voice_path)
|
242 |
music = AudioSegment.from_wav(music_path)
|
|
|
|
|
243 |
|
244 |
+
voice_len = len(voice) # in milliseconds
|
245 |
+
music_len = len(music) # in milliseconds
|
246 |
+
|
247 |
+
# Loop music if it's shorter than the voice
|
248 |
if music_len < voice_len:
|
249 |
looped_music = AudioSegment.empty()
|
250 |
while len(looped_music) < voice_len:
|
251 |
looped_music += music
|
252 |
music = looped_music
|
253 |
|
254 |
+
# Trim music if it's longer than the voice
|
255 |
if len(music) > voice_len:
|
256 |
music = music[:voice_len]
|
257 |
|
258 |
+
if ducking:
|
259 |
+
ducked_music = music - duck_level
|
260 |
+
final_audio = ducked_music.overlay(voice)
|
261 |
+
else:
|
262 |
+
final_audio = music.overlay(voice)
|
263 |
+
|
264 |
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
|
265 |
final_audio.export(output_path, format="wav")
|
266 |
return output_path
|
|
|
268 |
except Exception as e:
|
269 |
return f"Error blending audio: {e}"
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
# ---------------------------------------------------------------------
|
273 |
# Gradio Interface with Enhanced UI
|
274 |
# ---------------------------------------------------------------------
|
275 |
with gr.Blocks(css="""
|
276 |
+
/* Global Styles */
|
277 |
body {
|
278 |
background: linear-gradient(135deg, #1d1f21, #3a3d41);
|
279 |
color: #f0f0f0;
|
|
|
320 |
|
321 |
gr.Markdown("""
|
322 |
Welcome to **AI Promo Studio**! This platform leverages state-of-the-art AI models to help you generate:
|
323 |
+
|
324 |
+
- **Script**: Generate a compelling voice-over script with LLaMA.
|
325 |
+
- **Voice Synthesis**: Create natural-sounding voice-overs using Coqui TTS.
|
326 |
+
- **Music Production**: Produce custom music tracks with MusicGen.
|
327 |
+
- **Audio Blending**: Seamlessly blend voice and music with options for ducking.
|
328 |
""")
|
329 |
|
330 |
with gr.Tabs():
|
331 |
+
# Step 1: Generate Script
|
332 |
with gr.Tab("📝 Script Generation"):
|
333 |
with gr.Row():
|
334 |
+
user_prompt = gr.Textbox(
|
335 |
+
label="Promo Idea",
|
336 |
+
placeholder="E.g., A 30-second promo for a morning show...",
|
337 |
+
lines=2
|
338 |
+
)
|
339 |
with gr.Row():
|
340 |
+
llama_model_id = gr.Textbox(
|
341 |
+
label="LLaMA Model ID",
|
342 |
+
value="meta-llama/Meta-Llama-3-8B-Instruct",
|
343 |
+
placeholder="Enter a valid Hugging Face model ID"
|
344 |
+
)
|
345 |
+
duration = gr.Slider(
|
346 |
+
label="Desired Promo Duration (seconds)",
|
347 |
+
minimum=15,
|
348 |
+
maximum=60,
|
349 |
+
step=15,
|
350 |
+
value=30
|
351 |
+
)
|
352 |
generate_script_button = gr.Button("Generate Script", variant="primary")
|
353 |
+
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
|
354 |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
355 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
|
|
|
|
|
|
356 |
|
357 |
+
generate_script_button.click(
|
358 |
+
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
|
359 |
+
inputs=[user_prompt, llama_model_id, duration],
|
360 |
+
outputs=[script_output, sound_design_output, music_suggestion_output],
|
361 |
+
)
|
362 |
+
|
363 |
+
# Step 2: Generate Voice
|
364 |
with gr.Tab("🎤 Voice Synthesis"):
|
365 |
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
|
366 |
+
selected_tts_model = gr.Dropdown(
|
367 |
+
label="TTS Model",
|
368 |
+
choices=[
|
369 |
+
"tts_models/en/ljspeech/tacotron2-DDC",
|
370 |
+
"tts_models/en/ljspeech/vits",
|
371 |
+
"tts_models/en/sam/tacotron-DDC",
|
372 |
+
],
|
373 |
+
value="tts_models/en/ljspeech/tacotron2-DDC",
|
374 |
+
multiselect=False
|
375 |
+
)
|
376 |
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
|
377 |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
|
|
|
|
|
|
378 |
|
379 |
+
generate_voice_button.click(
|
380 |
+
fn=lambda script, tts_model: generate_voice(script, tts_model),
|
381 |
+
inputs=[script_output, selected_tts_model],
|
382 |
+
outputs=voice_audio_output,
|
383 |
+
)
|
384 |
+
|
385 |
+
# Step 3: Generate Music
|
386 |
with gr.Tab("🎶 Music Production"):
|
387 |
+
gr.Markdown("Generate a custom music track using the **MusicGen Large** model.")
|
388 |
+
audio_length = gr.Slider(
|
389 |
+
label="Music Length (tokens)",
|
390 |
+
minimum=128,
|
391 |
+
maximum=1024,
|
392 |
+
step=64,
|
393 |
+
value=512,
|
394 |
+
info="Increase tokens for longer audio (inference time may vary)."
|
395 |
+
)
|
396 |
generate_music_button = gr.Button("Generate Music", variant="primary")
|
397 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
|
|
|
|
|
|
398 |
|
399 |
+
generate_music_button.click(
|
400 |
+
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
|
401 |
+
inputs=[music_suggestion_output, audio_length],
|
402 |
+
outputs=[music_output],
|
403 |
+
)
|
404 |
+
|
405 |
+
# Step 4: Blend Audio
|
406 |
with gr.Tab("🎚️ Audio Blending"):
|
407 |
+
gr.Markdown("Blend your voice-over and music track. Music will be looped/truncated to match the voice duration. Enable ducking to lower the music during voice segments.")
|
408 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
409 |
+
duck_level_slider = gr.Slider(
|
410 |
+
label="Ducking Level (dB attenuation)",
|
411 |
+
minimum=0,
|
412 |
+
maximum=20,
|
413 |
+
step=1,
|
414 |
+
value=10
|
415 |
+
)
|
416 |
blend_button = gr.Button("Blend Voice + Music", variant="primary")
|
417 |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
|
|
|
|
|
|
418 |
|
419 |
+
blend_button.click(
|
420 |
+
fn=blend_audio,
|
421 |
+
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|
422 |
+
outputs=blended_output
|
423 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
+
# Footer
|
426 |
gr.Markdown("""
|
427 |
<div class="footer">
|
428 |
<hr>
|
|
|
432 |
</div>
|
433 |
""")
|
434 |
|
435 |
+
# Visitor Badge
|
436 |
gr.HTML("""
|
437 |
<div style="text-align: center; margin-top: 1rem;">
|
438 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
|