Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,22 +13,22 @@ from pydub import AudioSegment
|
|
13 |
from dotenv import load_dotenv
|
14 |
import tempfile
|
15 |
import spaces
|
|
|
|
|
16 |
from TTS.api import TTS
|
17 |
-
from TTS.utils.synthesizer import Synthesizer
|
18 |
|
19 |
# ---------------------------------------------------------------------
|
20 |
# Load Environment Variables
|
21 |
# ---------------------------------------------------------------------
|
22 |
load_dotenv()
|
23 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
24 |
|
25 |
# ---------------------------------------------------------------------
|
26 |
# Global Model Caches
|
27 |
# ---------------------------------------------------------------------
|
28 |
-
# We store models/pipelines in global variables for reuse,
|
29 |
-
# so they are only loaded once.
|
30 |
LLAMA_PIPELINES = {}
|
31 |
MUSICGEN_MODELS = {}
|
|
|
32 |
|
33 |
# ---------------------------------------------------------------------
|
34 |
# Helper Functions
|
@@ -36,12 +36,10 @@ MUSICGEN_MODELS = {}
|
|
36 |
def get_llama_pipeline(model_id: str, token: str):
|
37 |
"""
|
38 |
Returns a cached LLaMA pipeline if available; otherwise, loads it.
|
39 |
-
This significantly reduces loading time for repeated calls.
|
40 |
"""
|
41 |
if model_id in LLAMA_PIPELINES:
|
42 |
return LLAMA_PIPELINES[model_id]
|
43 |
|
44 |
-
# Load new pipeline and store in cache
|
45 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
46 |
model = AutoModelForCausalLM.from_pretrained(
|
47 |
model_id,
|
@@ -55,14 +53,14 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
55 |
return text_pipeline
|
56 |
|
57 |
|
58 |
-
def get_musicgen_model(model_key: str = "facebook/musicgen-
|
59 |
"""
|
60 |
Returns a cached MusicGen model if available; otherwise, loads it.
|
|
|
61 |
"""
|
62 |
if model_key in MUSICGEN_MODELS:
|
63 |
return MUSICGEN_MODELS[model_key]
|
64 |
|
65 |
-
# Load new MusicGen model and store in cache
|
66 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
67 |
processor = AutoProcessor.from_pretrained(model_key)
|
68 |
|
@@ -73,6 +71,18 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-medium"):
|
|
73 |
return model, processor
|
74 |
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# ---------------------------------------------------------------------
|
77 |
# Script Generation Function
|
78 |
# ---------------------------------------------------------------------
|
@@ -85,7 +95,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
85 |
try:
|
86 |
text_pipeline = get_llama_pipeline(model_id, token)
|
87 |
|
88 |
-
# System prompt with clear structure instructions
|
89 |
system_prompt = (
|
90 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
91 |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
|
@@ -93,10 +102,8 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
93 |
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
|
94 |
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
|
95 |
)
|
96 |
-
|
97 |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
|
98 |
|
99 |
-
# Use inference mode for efficient forward passes
|
100 |
with torch.inference_mode():
|
101 |
result = text_pipeline(
|
102 |
combined_prompt,
|
@@ -105,38 +112,37 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
105 |
temperature=0.8
|
106 |
)
|
107 |
|
108 |
-
# LLaMA pipeline returns a list of dicts with "generated_text"
|
109 |
generated_text = result[0]["generated_text"]
|
110 |
-
|
111 |
-
# Basic parsing to isolate everything after "Output:"
|
112 |
-
# (in case the model repeated your system prompt).
|
113 |
if "Output:" in generated_text:
|
114 |
generated_text = generated_text.split("Output:")[-1].strip()
|
115 |
|
116 |
-
#
|
117 |
voice_script = "No voice-over script found."
|
118 |
sound_design = "No sound design suggestions found."
|
119 |
music_suggestions = "No music suggestions found."
|
120 |
|
|
|
121 |
if "Voice-Over Script:" in generated_text:
|
122 |
parts = generated_text.split("Voice-Over Script:")
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
|
|
|
129 |
if "Sound Design Suggestions:" in generated_text:
|
130 |
parts = generated_text.split("Sound Design Suggestions:")
|
131 |
-
|
132 |
-
|
133 |
-
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
|
134 |
-
|
|
|
135 |
|
|
|
136 |
if "Music Suggestions:" in generated_text:
|
137 |
parts = generated_text.split("Music Suggestions:")
|
138 |
-
|
139 |
-
music_suggestions = parts[1].strip()
|
140 |
|
141 |
return voice_script, sound_design, music_suggestions
|
142 |
|
@@ -145,46 +151,55 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
145 |
|
146 |
|
147 |
# ---------------------------------------------------------------------
|
148 |
-
# Voice-Over Generation Function
|
149 |
# ---------------------------------------------------------------------
|
150 |
@spaces.GPU(duration=100)
|
151 |
-
def generate_voice(script: str,
|
152 |
"""
|
153 |
-
|
|
|
154 |
"""
|
155 |
try:
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
except Exception as e:
|
158 |
-
return f"Error: {e}"
|
159 |
|
160 |
|
161 |
# ---------------------------------------------------------------------
|
162 |
-
# Music Generation Function
|
163 |
# ---------------------------------------------------------------------
|
164 |
@spaces.GPU(duration=100)
|
165 |
def generate_music(prompt: str, audio_length: int):
|
166 |
"""
|
167 |
-
Generates music from the 'facebook/musicgen-
|
168 |
Returns the file path to the generated .wav file.
|
169 |
"""
|
170 |
try:
|
171 |
-
|
|
|
|
|
|
|
172 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
173 |
|
174 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
175 |
-
# Prepare input
|
176 |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
|
177 |
|
178 |
-
# Generate music within inference mode
|
179 |
with torch.inference_mode():
|
180 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
181 |
|
182 |
audio_data = outputs[0, 0].cpu().numpy()
|
183 |
-
# Normalize audio to int16 format
|
184 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
185 |
|
186 |
-
|
187 |
-
output_path = f"{tempfile.gettempdir()}/musicgen_medium_generated_music.wav"
|
188 |
write(output_path, 44100, normalized_audio)
|
189 |
|
190 |
return output_path
|
@@ -194,16 +209,46 @@ def generate_music(prompt: str, audio_length: int):
|
|
194 |
|
195 |
|
196 |
# ---------------------------------------------------------------------
|
197 |
-
# Audio Blending Function
|
198 |
# ---------------------------------------------------------------------
|
199 |
-
|
|
|
200 |
"""
|
201 |
-
|
|
|
|
|
202 |
"""
|
203 |
try:
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
except Exception as e:
|
206 |
-
return f"Error: {e}"
|
207 |
|
208 |
|
209 |
# ---------------------------------------------------------------------
|
@@ -211,9 +256,15 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool):
|
|
211 |
# ---------------------------------------------------------------------
|
212 |
with gr.Blocks() as demo:
|
213 |
gr.Markdown("""
|
214 |
-
# 🎧 AI Promo Studio 🚀
|
215 |
-
Welcome to **AI Promo Studio
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
""")
|
218 |
|
219 |
with gr.Tabs():
|
@@ -249,24 +300,39 @@ with gr.Blocks() as demo:
|
|
249 |
outputs=[script_output, sound_design_output, music_suggestion_output],
|
250 |
)
|
251 |
|
252 |
-
# Step 2: Generate Voice
|
253 |
with gr.Tab("Step 2: Generate Voice"):
|
254 |
-
gr.Markdown(""
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
# Step 3: Generate Music
|
260 |
with gr.Tab("Step 3: Generate Music"):
|
261 |
-
with
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
generate_music_button = gr.Button("Generate Music")
|
271 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
272 |
|
@@ -276,14 +342,27 @@ with gr.Blocks() as demo:
|
|
276 |
outputs=[music_output],
|
277 |
)
|
278 |
|
279 |
-
# Step 4: Blend Audio
|
280 |
with gr.Tab("Step 4: Blend Audio"):
|
281 |
-
gr.Markdown(""
|
282 |
-
|
283 |
-
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
-
# Footer
|
287 |
gr.Markdown("""
|
288 |
<hr>
|
289 |
<p style="text-align: center; font-size: 0.9em;">
|
@@ -298,5 +377,4 @@ with gr.Blocks() as demo:
|
|
298 |
</a>
|
299 |
""")
|
300 |
|
301 |
-
# Launch the Gradio app
|
302 |
demo.launch(debug=True)
|
|
|
13 |
from dotenv import load_dotenv
|
14 |
import tempfile
|
15 |
import spaces
|
16 |
+
|
17 |
+
# Coqui TTS
|
18 |
from TTS.api import TTS
|
|
|
19 |
|
20 |
# ---------------------------------------------------------------------
|
21 |
# Load Environment Variables
|
22 |
# ---------------------------------------------------------------------
|
23 |
load_dotenv()
|
24 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Adjust if needed
|
25 |
|
26 |
# ---------------------------------------------------------------------
|
27 |
# Global Model Caches
|
28 |
# ---------------------------------------------------------------------
|
|
|
|
|
29 |
LLAMA_PIPELINES = {}
|
30 |
MUSICGEN_MODELS = {}
|
31 |
+
TTS_MODELS = {}
|
32 |
|
33 |
# ---------------------------------------------------------------------
|
34 |
# Helper Functions
|
|
|
36 |
def get_llama_pipeline(model_id: str, token: str):
|
37 |
"""
|
38 |
Returns a cached LLaMA pipeline if available; otherwise, loads it.
|
|
|
39 |
"""
|
40 |
if model_id in LLAMA_PIPELINES:
|
41 |
return LLAMA_PIPELINES[model_id]
|
42 |
|
|
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
44 |
model = AutoModelForCausalLM.from_pretrained(
|
45 |
model_id,
|
|
|
53 |
return text_pipeline
|
54 |
|
55 |
|
56 |
+
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
57 |
"""
|
58 |
Returns a cached MusicGen model if available; otherwise, loads it.
|
59 |
+
Uses the 'large' variant for higher quality outputs.
|
60 |
"""
|
61 |
if model_key in MUSICGEN_MODELS:
|
62 |
return MUSICGEN_MODELS[model_key]
|
63 |
|
|
|
64 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
65 |
processor = AutoProcessor.from_pretrained(model_key)
|
66 |
|
|
|
71 |
return model, processor
|
72 |
|
73 |
|
74 |
+
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
75 |
+
"""
|
76 |
+
Returns a cached TTS model if available; otherwise, loads it.
|
77 |
+
"""
|
78 |
+
if model_name in TTS_MODELS:
|
79 |
+
return TTS_MODELS[model_name]
|
80 |
+
|
81 |
+
tts_model = TTS(model_name)
|
82 |
+
TTS_MODELS[model_name] = tts_model
|
83 |
+
return tts_model
|
84 |
+
|
85 |
+
|
86 |
# ---------------------------------------------------------------------
|
87 |
# Script Generation Function
|
88 |
# ---------------------------------------------------------------------
|
|
|
95 |
try:
|
96 |
text_pipeline = get_llama_pipeline(model_id, token)
|
97 |
|
|
|
98 |
system_prompt = (
|
99 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
100 |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
|
|
|
102 |
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
|
103 |
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
|
104 |
)
|
|
|
105 |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
|
106 |
|
|
|
107 |
with torch.inference_mode():
|
108 |
result = text_pipeline(
|
109 |
combined_prompt,
|
|
|
112 |
temperature=0.8
|
113 |
)
|
114 |
|
|
|
115 |
generated_text = result[0]["generated_text"]
|
|
|
|
|
|
|
116 |
if "Output:" in generated_text:
|
117 |
generated_text = generated_text.split("Output:")[-1].strip()
|
118 |
|
119 |
+
# Default placeholders
|
120 |
voice_script = "No voice-over script found."
|
121 |
sound_design = "No sound design suggestions found."
|
122 |
music_suggestions = "No music suggestions found."
|
123 |
|
124 |
+
# Voice-Over Script
|
125 |
if "Voice-Over Script:" in generated_text:
|
126 |
parts = generated_text.split("Voice-Over Script:")
|
127 |
+
voice_script_part = parts[1]
|
128 |
+
if "Sound Design Suggestions:" in voice_script_part:
|
129 |
+
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
|
130 |
+
else:
|
131 |
+
voice_script = voice_script_part.strip()
|
132 |
|
133 |
+
# Sound Design
|
134 |
if "Sound Design Suggestions:" in generated_text:
|
135 |
parts = generated_text.split("Sound Design Suggestions:")
|
136 |
+
sound_design_part = parts[1]
|
137 |
+
if "Music Suggestions:" in sound_design_part:
|
138 |
+
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
|
139 |
+
else:
|
140 |
+
sound_design = sound_design_part.strip()
|
141 |
|
142 |
+
# Music Suggestions
|
143 |
if "Music Suggestions:" in generated_text:
|
144 |
parts = generated_text.split("Music Suggestions:")
|
145 |
+
music_suggestions = parts[1].strip()
|
|
|
146 |
|
147 |
return voice_script, sound_design, music_suggestions
|
148 |
|
|
|
151 |
|
152 |
|
153 |
# ---------------------------------------------------------------------
|
154 |
+
# Voice-Over Generation Function
|
155 |
# ---------------------------------------------------------------------
|
156 |
@spaces.GPU(duration=100)
|
157 |
+
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
158 |
"""
|
159 |
+
Generates a voice-over from the provided script using the Coqui TTS model.
|
160 |
+
Returns the file path to the generated .wav file.
|
161 |
"""
|
162 |
try:
|
163 |
+
if not script.strip():
|
164 |
+
return "Error: No script provided."
|
165 |
+
|
166 |
+
tts_model = get_tts_model(tts_model_name)
|
167 |
+
|
168 |
+
# Generate and save voice
|
169 |
+
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
170 |
+
tts_model.tts_to_file(text=script, file_path=output_path)
|
171 |
+
return output_path
|
172 |
+
|
173 |
except Exception as e:
|
174 |
+
return f"Error generating voice: {e}"
|
175 |
|
176 |
|
177 |
# ---------------------------------------------------------------------
|
178 |
+
# Music Generation Function (Using facebook/musicgen-large)
|
179 |
# ---------------------------------------------------------------------
|
180 |
@spaces.GPU(duration=100)
|
181 |
def generate_music(prompt: str, audio_length: int):
|
182 |
"""
|
183 |
+
Generates music from the 'facebook/musicgen-large' model based on the prompt.
|
184 |
Returns the file path to the generated .wav file.
|
185 |
"""
|
186 |
try:
|
187 |
+
if not prompt.strip():
|
188 |
+
return "Error: No music suggestion provided."
|
189 |
+
|
190 |
+
model_key = "facebook/musicgen-large"
|
191 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
192 |
|
193 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
194 |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
|
195 |
|
|
|
196 |
with torch.inference_mode():
|
197 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
198 |
|
199 |
audio_data = outputs[0, 0].cpu().numpy()
|
|
|
200 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
201 |
|
202 |
+
output_path = f"{tempfile.gettempdir()}/musicgen_large_generated_music.wav"
|
|
|
203 |
write(output_path, 44100, normalized_audio)
|
204 |
|
205 |
return output_path
|
|
|
209 |
|
210 |
|
211 |
# ---------------------------------------------------------------------
|
212 |
+
# Audio Blending Function with Ducking
|
213 |
# ---------------------------------------------------------------------
|
214 |
+
@spaces.GPU(duration=100)
|
215 |
+
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
216 |
"""
|
217 |
+
Blends two audio files (voice and music). If ducking=True,
|
218 |
+
the music is attenuated by 'duck_level' dB while the voice is playing.
|
219 |
+
Returns the file path to the blended .wav file.
|
220 |
"""
|
221 |
try:
|
222 |
+
if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
|
223 |
+
return "Error: Missing audio files for blending."
|
224 |
+
|
225 |
+
voice = AudioSegment.from_wav(voice_path)
|
226 |
+
music = AudioSegment.from_wav(music_path)
|
227 |
+
|
228 |
+
# If the voice is longer than the music, extend music with silence
|
229 |
+
if len(voice) > len(music):
|
230 |
+
extension = AudioSegment.silent(duration=(len(voice) - len(music)))
|
231 |
+
music = music + extension
|
232 |
+
|
233 |
+
if ducking:
|
234 |
+
# Step 1: Reduce music by `duck_level` dB for the portion matching the voice duration
|
235 |
+
ducked_music_part = music[:len(voice)] - duck_level
|
236 |
+
# Overlay voice on top of the ducked music portion
|
237 |
+
voice_overlaid = ducked_music_part.overlay(voice)
|
238 |
+
|
239 |
+
# Step 2: Keep the rest of the music as-is
|
240 |
+
remainder = music[len(voice):]
|
241 |
+
final_audio = voice_overlaid + remainder
|
242 |
+
else:
|
243 |
+
# No ducking, just overlay
|
244 |
+
final_audio = music.overlay(voice)
|
245 |
+
|
246 |
+
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
|
247 |
+
final_audio.export(output_path, format="wav")
|
248 |
+
return output_path
|
249 |
+
|
250 |
except Exception as e:
|
251 |
+
return f"Error blending audio: {e}"
|
252 |
|
253 |
|
254 |
# ---------------------------------------------------------------------
|
|
|
256 |
# ---------------------------------------------------------------------
|
257 |
with gr.Blocks() as demo:
|
258 |
gr.Markdown("""
|
259 |
+
# 🎧 AI Promo Studio with MusicGen Large, Voice Over & Audio Blending 🚀
|
260 |
+
Welcome to **AI Promo Studio**!
|
261 |
+
This pipeline uses **facebook/musicgen-large** for high-quality background music (more resource-intensive).
|
262 |
+
|
263 |
+
**Workflow**:
|
264 |
+
1. **Generate Script** (via LLaMA)
|
265 |
+
2. **Generate Voice-Over** (via Coqui TTS)
|
266 |
+
3. **Generate Music** (via MusicGen Large)
|
267 |
+
4. **Blend** (Voice + Music) with optional ducking
|
268 |
""")
|
269 |
|
270 |
with gr.Tabs():
|
|
|
300 |
outputs=[script_output, sound_design_output, music_suggestion_output],
|
301 |
)
|
302 |
|
303 |
+
# Step 2: Generate Voice
|
304 |
with gr.Tab("Step 2: Generate Voice"):
|
305 |
+
gr.Markdown("Generate the voice-over using a Coqui TTS model.")
|
306 |
+
selected_tts_model = gr.Dropdown(
|
307 |
+
label="TTS Model",
|
308 |
+
choices=[
|
309 |
+
"tts_models/en/ljspeech/tacotron2-DDC",
|
310 |
+
"tts_models/en/ljspeech/vits",
|
311 |
+
"tts_models/en/sam/tacotron-DDC",
|
312 |
+
],
|
313 |
+
value="tts_models/en/ljspeech/tacotron2-DDC",
|
314 |
+
multiselect=False
|
315 |
+
)
|
316 |
+
generate_voice_button = gr.Button("Generate Voice-Over")
|
317 |
+
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
318 |
+
|
319 |
+
generate_voice_button.click(
|
320 |
+
fn=lambda script, tts_model: generate_voice(script, tts_model),
|
321 |
+
inputs=[script_output, selected_tts_model],
|
322 |
+
outputs=voice_audio_output,
|
323 |
+
)
|
324 |
|
325 |
+
# Step 3: Generate Music (MusicGen Large)
|
326 |
with gr.Tab("Step 3: Generate Music"):
|
327 |
+
gr.Markdown("Generate a music track with the **MusicGen Large** model.")
|
328 |
+
audio_length = gr.Slider(
|
329 |
+
label="Music Length (tokens)",
|
330 |
+
minimum=128,
|
331 |
+
maximum=1024,
|
332 |
+
step=64,
|
333 |
+
value=512,
|
334 |
+
info="Increase tokens for longer audio, but be mindful of inference time."
|
335 |
+
)
|
336 |
generate_music_button = gr.Button("Generate Music")
|
337 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
338 |
|
|
|
342 |
outputs=[music_output],
|
343 |
)
|
344 |
|
345 |
+
# Step 4: Blend Audio
|
346 |
with gr.Tab("Step 4: Blend Audio"):
|
347 |
+
gr.Markdown("Combine voice-over and music, optionally applying ducking.")
|
348 |
+
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
349 |
+
duck_level_slider = gr.Slider(
|
350 |
+
label="Ducking Level (dB attenuation)",
|
351 |
+
minimum=0,
|
352 |
+
maximum=20,
|
353 |
+
step=1,
|
354 |
+
value=10
|
355 |
+
)
|
356 |
+
blend_button = gr.Button("Blend Voice + Music")
|
357 |
+
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
358 |
+
|
359 |
+
blend_button.click(
|
360 |
+
fn=blend_audio,
|
361 |
+
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|
362 |
+
outputs=blended_output
|
363 |
+
)
|
364 |
|
365 |
+
# Footer
|
366 |
gr.Markdown("""
|
367 |
<hr>
|
368 |
<p style="text-align: center; font-size: 0.9em;">
|
|
|
377 |
</a>
|
378 |
""")
|
379 |
|
|
|
380 |
demo.launch(debug=True)
|