Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
|
|
4 |
from transformers import (
|
5 |
-
AutoTokenizer,
|
6 |
-
AutoModelForCausalLM,
|
7 |
pipeline,
|
8 |
-
AutoProcessor,
|
9 |
-
MusicgenForConditionalGeneration
|
10 |
)
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
13 |
from dotenv import load_dotenv
|
14 |
-
import spaces #
|
15 |
|
16 |
# Load environment variables (e.g., Hugging Face token)
|
17 |
load_dotenv()
|
@@ -22,10 +23,31 @@ llama_pipeline = None
|
|
22 |
musicgen_model = None
|
23 |
musicgen_processor = None
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# ---------------------------------------------------------------------
|
26 |
# Load Llama 3 Model with Zero GPU (Lazy Loading)
|
27 |
# ---------------------------------------------------------------------
|
28 |
-
@spaces.GPU(duration=
|
29 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
30 |
global llama_pipeline
|
31 |
if llama_pipeline is None:
|
@@ -33,13 +55,7 @@ def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
|
33 |
print("Starting model loading...")
|
34 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
35 |
print("Tokenizer loaded.")
|
36 |
-
model =
|
37 |
-
model_id,
|
38 |
-
use_auth_token=token,
|
39 |
-
torch_dtype=torch.float16,
|
40 |
-
device_map="auto", # Automatically handles GPU allocation
|
41 |
-
trust_remote_code=True
|
42 |
-
)
|
43 |
print("Model loaded. Initializing pipeline...")
|
44 |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
45 |
print("Pipeline initialized successfully.")
|
@@ -66,7 +82,7 @@ def generate_script(user_input: str, pipeline_llama):
|
|
66 |
# ---------------------------------------------------------------------
|
67 |
# Load MusicGen Model (Lazy Loading)
|
68 |
# ---------------------------------------------------------------------
|
69 |
-
@spaces.GPU(duration=
|
70 |
def load_musicgen_model():
|
71 |
global musicgen_model, musicgen_processor
|
72 |
if musicgen_model is None or musicgen_processor is None:
|
@@ -83,7 +99,7 @@ def load_musicgen_model():
|
|
83 |
# ---------------------------------------------------------------------
|
84 |
# Generate Audio
|
85 |
# ---------------------------------------------------------------------
|
86 |
-
@spaces.GPU(duration=
|
87 |
def generate_audio(prompt: str, audio_length: int):
|
88 |
global musicgen_model, musicgen_processor
|
89 |
if musicgen_model is None or musicgen_processor is None:
|
@@ -132,7 +148,7 @@ with gr.Blocks() as demo:
|
|
132 |
|
133 |
with gr.Row():
|
134 |
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
|
135 |
-
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-
|
136 |
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
137 |
|
138 |
with gr.Row():
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
+
import time
|
5 |
from transformers import (
|
6 |
+
AutoTokenizer,
|
7 |
+
AutoModelForCausalLM,
|
8 |
pipeline,
|
9 |
+
AutoProcessor,
|
10 |
+
MusicgenForConditionalGeneration,
|
11 |
)
|
12 |
from scipy.io.wavfile import write
|
13 |
import tempfile
|
14 |
from dotenv import load_dotenv
|
15 |
+
import spaces # Hugging Face Spaces library for ZeroGPU support
|
16 |
|
17 |
# Load environment variables (e.g., Hugging Face token)
|
18 |
load_dotenv()
|
|
|
23 |
musicgen_model = None
|
24 |
musicgen_processor = None
|
25 |
|
26 |
+
# ---------------------------------------------------------------------
|
27 |
+
# Helper: Safe Model Loader with Retry Logic
|
28 |
+
# ---------------------------------------------------------------------
|
29 |
+
def safe_load_model(model_id, token, retries=3, delay=5):
|
30 |
+
for attempt in range(retries):
|
31 |
+
try:
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
model_id,
|
34 |
+
use_auth_token=token,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
device_map="auto",
|
37 |
+
trust_remote_code=True,
|
38 |
+
offload_folder="/tmp", # Stream shards
|
39 |
+
cache_dir="/tmp" # Cache directory for shard downloads
|
40 |
+
)
|
41 |
+
return model
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Attempt {attempt + 1} failed: {e}")
|
44 |
+
time.sleep(delay)
|
45 |
+
raise RuntimeError(f"Failed to load model {model_id} after {retries} attempts")
|
46 |
+
|
47 |
# ---------------------------------------------------------------------
|
48 |
# Load Llama 3 Model with Zero GPU (Lazy Loading)
|
49 |
# ---------------------------------------------------------------------
|
50 |
+
@spaces.GPU(duration=600) # Increased duration to handle large models
|
51 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
52 |
global llama_pipeline
|
53 |
if llama_pipeline is None:
|
|
|
55 |
print("Starting model loading...")
|
56 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
57 |
print("Tokenizer loaded.")
|
58 |
+
model = safe_load_model(model_id, token)
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
print("Model loaded. Initializing pipeline...")
|
60 |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
61 |
print("Pipeline initialized successfully.")
|
|
|
82 |
# ---------------------------------------------------------------------
|
83 |
# Load MusicGen Model (Lazy Loading)
|
84 |
# ---------------------------------------------------------------------
|
85 |
+
@spaces.GPU(duration=600)
|
86 |
def load_musicgen_model():
|
87 |
global musicgen_model, musicgen_processor
|
88 |
if musicgen_model is None or musicgen_processor is None:
|
|
|
99 |
# ---------------------------------------------------------------------
|
100 |
# Generate Audio
|
101 |
# ---------------------------------------------------------------------
|
102 |
+
@spaces.GPU(duration=600)
|
103 |
def generate_audio(prompt: str, audio_length: int):
|
104 |
global musicgen_model, musicgen_processor
|
105 |
if musicgen_model is None or musicgen_processor is None:
|
|
|
148 |
|
149 |
with gr.Row():
|
150 |
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
|
151 |
+
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-8B") # Using a smaller model for better compatibility
|
152 |
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
153 |
|
154 |
with gr.Row():
|