Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import os | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
pipeline, | |
AutoProcessor, | |
MusicgenForConditionalGeneration, | |
) | |
from scipy.io.wavfile import write | |
from pydub import AudioSegment | |
from dotenv import load_dotenv | |
import tempfile | |
import spaces | |
# Coqui TTS | |
from TTS.api import TTS | |
# --------------------------------------------------------------------- | |
# Load Environment Variables | |
# --------------------------------------------------------------------- | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# --------------------------------------------------------------------- | |
# Global Model Caches | |
# --------------------------------------------------------------------- | |
LLAMA_PIPELINES = {} | |
MUSICGEN_MODELS = {} | |
TTS_MODELS = {} | |
# --------------------------------------------------------------------- | |
# Helper Functions | |
# --------------------------------------------------------------------- | |
def get_llama_pipeline(model_id: str, token: str): | |
""" | |
Returns a cached LLaMA pipeline if available; otherwise, loads it. | |
""" | |
if model_id in LLAMA_PIPELINES: | |
return LLAMA_PIPELINES[model_id] | |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
use_auth_token=token, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True, | |
) | |
text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
LLAMA_PIPELINES[model_id] = text_pipeline | |
return text_pipeline | |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"): | |
""" | |
Returns a cached MusicGen model if available; otherwise, loads it. | |
Uses the 'large' variant for higher quality outputs. | |
""" | |
if model_key in MUSICGEN_MODELS: | |
return MUSICGEN_MODELS[model_key] | |
model = MusicgenForConditionalGeneration.from_pretrained(model_key) | |
processor = AutoProcessor.from_pretrained(model_key) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
MUSICGEN_MODELS[model_key] = (model, processor) | |
return model, processor | |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"): | |
""" | |
Returns a cached TTS model if available; otherwise, loads it. | |
""" | |
if model_name in TTS_MODELS: | |
return TTS_MODELS[model_name] | |
tts_model = TTS(model_name) | |
TTS_MODELS[model_name] = tts_model | |
return tts_model | |
# --------------------------------------------------------------------- | |
# Script Generation Function | |
# --------------------------------------------------------------------- | |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int): | |
""" | |
Generates a script, sound design suggestions, and music ideas from a user prompt. | |
Returns a tuple of strings: (voice_script, sound_design, music_suggestions). | |
""" | |
try: | |
text_pipeline = get_llama_pipeline(model_id, token) | |
system_prompt = ( | |
"You are an expert radio imaging producer specializing in sound design and music. " | |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: " | |
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n" | |
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n" | |
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'." | |
) | |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:" | |
with torch.inference_mode(): | |
result = text_pipeline( | |
combined_prompt, | |
max_new_tokens=300, | |
do_sample=True, | |
temperature=0.8 | |
) | |
generated_text = result[0]["generated_text"] | |
if "Output:" in generated_text: | |
generated_text = generated_text.split("Output:")[-1].strip() | |
# Default placeholders | |
voice_script = "No voice-over script found." | |
sound_design = "No sound design suggestions found." | |
music_suggestions = "No music suggestions found." | |
# Voice-Over Script | |
if "Voice-Over Script:" in generated_text: | |
parts = generated_text.split("Voice-Over Script:") | |
voice_script_part = parts[1] | |
if "Sound Design Suggestions:" in voice_script_part: | |
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip() | |
else: | |
voice_script = voice_script_part.strip() | |
# Sound Design | |
if "Sound Design Suggestions:" in generated_text: | |
parts = generated_text.split("Sound Design Suggestions:") | |
sound_design_part = parts[1] | |
if "Music Suggestions:" in sound_design_part: | |
sound_design = sound_design_part.split("Music Suggestions:")[0].strip() | |
else: | |
sound_design = sound_design_part.strip() | |
# Music Suggestions | |
if "Music Suggestions:" in generated_text: | |
parts = generated_text.split("Music Suggestions:") | |
music_suggestions = parts[1].strip() | |
return voice_script, sound_design, music_suggestions | |
except Exception as e: | |
return f"Error generating script: {e}", "", "" | |
# --------------------------------------------------------------------- | |
# Voice-Over Generation Function | |
# --------------------------------------------------------------------- | |
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"): | |
""" | |
Generates a voice-over from the provided script using the Coqui TTS model. | |
Returns the file path to the generated .wav file. | |
""" | |
try: | |
if not script.strip(): | |
return "Error: No script provided." | |
tts_model = get_tts_model(tts_model_name) | |
# Generate and save voice | |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav") | |
tts_model.tts_to_file(text=script, file_path=output_path) | |
return output_path | |
except Exception as e: | |
return f"Error generating voice: {e}" | |
# --------------------------------------------------------------------- | |
# Music Generation Function | |
# --------------------------------------------------------------------- | |
def generate_music(prompt: str, audio_length: int): | |
""" | |
Generates music from the 'facebook/musicgen-large' model based on the prompt. | |
Returns the file path to the generated .wav file. | |
""" | |
try: | |
if not prompt.strip(): | |
return "Error: No music suggestion provided." | |
model_key = "facebook/musicgen-large" | |
musicgen_model, musicgen_processor = get_musicgen_model(model_key) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device) | |
with torch.inference_mode(): | |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length) | |
audio_data = outputs[0, 0].cpu().numpy() | |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") | |
output_path = f"{tempfile.gettempdir()}/musicgen_large_generated_music.wav" | |
write(output_path, 44100, normalized_audio) | |
return output_path | |
except Exception as e: | |
return f"Error generating music: {e}" | |
# --------------------------------------------------------------------- | |
# Audio Blending with Duration Sync & Ducking | |
# --------------------------------------------------------------------- | |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10): | |
""" | |
Blends two audio files (voice and music). | |
1. If music < voice, loops the music until it meets/exceeds the voice duration. | |
2. If music > voice, trims music to the voice duration. | |
3. If ducking=True, the music is attenuated by 'duck_level' dB while the voice is playing. | |
Returns the file path to the blended .wav file. | |
""" | |
try: | |
if not os.path.isfile(voice_path) or not os.path.isfile(music_path): | |
return "Error: Missing audio files for blending." | |
voice = AudioSegment.from_wav(voice_path) | |
music = AudioSegment.from_wav(music_path) | |
voice_len = len(voice) # in milliseconds | |
music_len = len(music) # in milliseconds | |
# 1) If the music is shorter than the voice, loop it: | |
if music_len < voice_len: | |
looped_music = AudioSegment.empty() | |
# Keep appending until we exceed voice length | |
while len(looped_music) < voice_len: | |
looped_music += music | |
music = looped_music | |
# 2) If the music is longer than the voice, truncate it: | |
if len(music) > voice_len: | |
music = music[:voice_len] | |
# Now music and voice are the same length | |
if ducking: | |
# Step 1: Reduce music dB while voice is playing | |
ducked_music = music - duck_level | |
# Step 2: Overlay voice on top of ducked music | |
final_audio = ducked_music.overlay(voice) | |
else: | |
# No ducking, just overlay | |
final_audio = music.overlay(voice) | |
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav") | |
final_audio.export(output_path, format="wav") | |
return output_path | |
except Exception as e: | |
return f"Error blending audio: {e}" | |
# --------------------------------------------------------------------- | |
# Gradio Interface | |
# --------------------------------------------------------------------- | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# 🎧 AI Promo Studio | |
Welcome to **AI Promo Studio**, your all-in-one solution for creating professional, engaging audio promos with minimal effort! | |
This next-generation platform uses powerful AI models to handle: | |
- **Script Generation**: Craft concise and impactful copy with LLaMA. | |
- **Voice Synthesis**: Convert text into natural-sounding voice-overs using Coqui TTS. | |
- **Music Production**: Generate custom music tracks with MusicGen Large for sound bed. | |
- **Seamless Blending**: Easily combine voice and music—loop or trim tracks to match your desired promo length, with optional ducking to keep the voice front and center. | |
Whether you’re a radio producer, podcaster, or content creator, **AI Promo Studio** streamlines your entire production pipeline—cutting hours of manual editing down to a few clicks. | |
""") | |
with gr.Tabs(): | |
# Step 1: Generate Script | |
with gr.Tab("Step 1: Generate Script"): | |
with gr.Row(): | |
user_prompt = gr.Textbox( | |
label="Promo Idea", | |
placeholder="E.g., A 30-second promo for a morning show...", | |
lines=2 | |
) | |
llama_model_id = gr.Textbox( | |
label="LLaMA Model ID", | |
value="meta-llama/Meta-Llama-3-8B-Instruct", | |
placeholder="Enter a valid Hugging Face model ID" | |
) | |
duration = gr.Slider( | |
label="Desired Promo Duration (seconds)", | |
minimum=15, | |
maximum=60, | |
step=15, | |
value=30 | |
) | |
generate_script_button = gr.Button("Generate Script") | |
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False) | |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False) | |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False) | |
generate_script_button.click( | |
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur), | |
inputs=[user_prompt, llama_model_id, duration], | |
outputs=[script_output, sound_design_output, music_suggestion_output], | |
) | |
# Step 2: Generate Voice | |
with gr.Tab("Step 2: Generate Voice"): | |
gr.Markdown("Generate the voice-over using a Coqui TTS model.") | |
selected_tts_model = gr.Dropdown( | |
label="TTS Model", | |
choices=[ | |
"tts_models/en/ljspeech/tacotron2-DDC", | |
"tts_models/en/ljspeech/vits", | |
"tts_models/en/sam/tacotron-DDC", | |
], | |
value="tts_models/en/ljspeech/tacotron2-DDC", | |
multiselect=False | |
) | |
generate_voice_button = gr.Button("Generate Voice-Over") | |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath") | |
generate_voice_button.click( | |
fn=lambda script, tts_model: generate_voice(script, tts_model), | |
inputs=[script_output, selected_tts_model], | |
outputs=voice_audio_output, | |
) | |
# Step 3: Generate Music (MusicGen Large) | |
with gr.Tab("Step 3: Generate Music"): | |
gr.Markdown("Generate a music track with the **MusicGen Large** model.") | |
audio_length = gr.Slider( | |
label="Music Length (tokens)", | |
minimum=128, | |
maximum=1024, | |
step=64, | |
value=512, | |
info="Increase tokens for longer audio, but be mindful of inference time." | |
) | |
generate_music_button = gr.Button("Generate Music") | |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath") | |
generate_music_button.click( | |
fn=lambda music_suggestion, length: generate_music(music_suggestion, length), | |
inputs=[music_suggestion_output, audio_length], | |
outputs=[music_output], | |
) | |
# Step 4: Blend Audio (Loop/Trim + Ducking) | |
with gr.Tab("Step 4: Blend Audio"): | |
gr.Markdown("**Music** will be looped or trimmed to match **Voice** duration, then optionally ducked.") | |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True) | |
duck_level_slider = gr.Slider( | |
label="Ducking Level (dB attenuation)", | |
minimum=0, | |
maximum=20, | |
step=1, | |
value=10 | |
) | |
blend_button = gr.Button("Blend Voice + Music") | |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath") | |
blend_button.click( | |
fn=blend_audio, | |
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider], | |
outputs=blended_output | |
) | |
# Footer | |
gr.Markdown(""" | |
<hr> | |
<p style="text-align: center; font-size: 0.9em;"> | |
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a> | |
</p> | |
""") | |
# Visitor Badge | |
gr.HTML(""" | |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold"> | |
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" /> | |
</a> | |
""") | |
demo.launch(debug=True) | |