Spaces:
Running
Running
File size: 17,156 Bytes
a12f61e e64ce90 a12f61e e64ce90 a12f61e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
"""This script refers to the dialogue example of streamlit, the interactive
generation code of chatglm2 and transformers.
We mainly modified part of the code logic to adapt to the
generation of our model.
Please refer to these links below for more information:
1. streamlit chat example:
https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps
2. chatglm2:
https://github.com/THUDM/ChatGLM2-6B
3. transformers:
https://github.com/huggingface/transformers
Please run with the command `streamlit run path/to/web_demo.py
--server.address=0.0.0.0 --server.port 7860`.
Using `python path/to/web_demo.py` may cause unknown problems.
"""
# isort: skip_file
import copy
import re
import warnings
from dataclasses import asdict, dataclass
from typing import Callable, List, Optional
import streamlit as st
import torch
from torch import nn
from transformers.generation.utils import LogitsProcessorList
from transformers.utils import logging
from transformers import AutoTokenizer, AutoModelForCausalLM # isort: skip
logger = logging.get_logger(__name__)
st.set_page_config(layout='wide')
@dataclass
class GenerationConfig:
# this config is used for chat to provide more diversity
max_length: int = 32768
top_p: float = 0.8
temperature: float = 0.8
do_sample: bool = True
repetition_penalty: float = 1.005
@torch.inference_mode()
def generate_interactive(
model,
tokenizer,
prompt,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
additional_eos_token_id: Optional[int] = None,
**kwargs,
):
inputs = tokenizer([prompt], padding=True, return_tensors='pt')
input_length = len(inputs['input_ids'][0])
for k, v in inputs.items():
inputs[k] = v.to(model.device)
input_ids = inputs['input_ids']
_, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
if generation_config is None:
generation_config = model.generation_config
generation_config = copy.deepcopy(generation_config)
generation_config._eos_token_tensor = generation_config.eos_token_id
model_kwargs = generation_config.update(**kwargs)
if generation_config.temperature == 0.0:
generation_config.do_sample = False
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if additional_eos_token_id is not None:
eos_token_id.append(additional_eos_token_id)
has_default_max_length = kwargs.get('max_length') is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
f"Using 'max_length''s default \
({repr(generation_config.max_length)}) \
to control the generation length. "
'This behaviour is deprecated and will be removed from the \
config in v5 of Transformers -- we'
' recommend using `max_new_tokens` to control the maximum \
length of the generation.',
UserWarning,
)
elif generation_config.max_new_tokens is not None:
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if not has_default_max_length:
logger.warn( # pylint: disable=W4902
f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) "
f"and 'max_length'(={generation_config.max_length}) seem to "
"have been set. 'max_new_tokens' will take precedence. "
'Please refer to the documentation for more information. '
'(https://huggingface.co./docs/transformers/main/'
'en/main_classes/text_generation)',
UserWarning,
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = 'input_ids'
logger.warning(
f'Input length of {input_ids_string} is {input_ids_seq_length}, '
f"but 'max_length' is set to {generation_config.max_length}. "
'This can lead to unexpected behavior. You should consider'
" increasing 'max_new_tokens'."
)
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
logits_processor = model._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
while True:
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = model(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
if generation_config.do_sample:
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(probs, dim=-1)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
output_token_ids = input_ids[0].cpu().tolist()
output_token_ids = output_token_ids[input_length:]
for each_eos_token_id in eos_token_id:
if output_token_ids[-1] == each_eos_token_id:
output_token_ids = output_token_ids[:-1]
response = tokenizer.decode(output_token_ids)
yield response
# stop when each sentence is finished
# or if we exceed the maximum length
if unfinished_sequences.max() == 0:
break
def on_btn_click():
del st.session_state.messages
del st.session_state.deepthink_messages
def postprocess(text, add_prefix=True, deepthink=False):
text = re.sub(r'\\\(|\\\)', r'$', text)
text = re.sub(r'\\\[|\\\]', r'$$', text)
if add_prefix:
text = (':red[[Deep Thinking]]\n\n' if deepthink else ':blue[[Normal Response]]\n\n') + text
return text
@st.cache_resource
def load_model():
model_path = 'internlm/internlm3-8b-instruct'
model = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True, device_map='auto', torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
return model, tokenizer
def prepare_generation_config():
with st.sidebar:
max_length = st.slider('Max Length', min_value=8, max_value=32768, value=32768)
top_p = st.slider('Top P', 0.0, 1.0, 0.8, step=0.01)
temperature = st.slider('Temperature', 0.0, 1.0, 0.7, step=0.01)
radio = st.radio('Inference Mode', ['Normal Response', 'Deep Thinking'], key='mode')
st.button('Clear Chat History', on_click=on_btn_click)
st.session_state['inference_mode'] = radio
generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)
return generation_config
user_prompt = '<|im_start|>user\n{user}<|im_end|>\n'
robot_prompt = '<|im_start|>assistant\n{robot}<|im_end|>\n'
cur_query_prompt = '<|im_start|>user\n{user}<|im_end|>\n\
<|im_start|>assistant\n'
def combine_history(prompt, deepthink=False, start=0, stop=None):
if stop is None:
stop = len(st.session_state.messages)
elif stop < 0:
stop = len(st.session_state.messages) + stop
messages = []
for idx in range(start, stop):
message, deepthink_message = st.session_state.messages[idx], st.session_state.deepthink_messages[idx]
if deepthink:
if deepthink_message['content'] is not None:
messages.append(deepthink_message)
else:
messages.append(message)
else:
if message['content'] is not None:
messages.append(message)
else:
messages.append(deepthink_message)
meta_instruction = (
'You are InternLM (书生·浦语), a helpful, honest, '
'and harmless AI assistant developed by Shanghai '
'AI Laboratory (上海人工智能实验室).'
)
if deepthink:
meta_instruction += """You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
## Deep Understanding
Take time to fully comprehend the problem before attempting a solution. Consider:
- What is the real question being asked?
- What are the given conditions and what do they tell us?
- Are there any special restrictions or assumptions?
- Which information is crucial and which is supplementary?
## Multi-angle Analysis
Before solving, conduct thorough analysis:
- What mathematical concepts and properties are involved?
- Can you recall similar classic problems or solution methods?
- Would diagrams or tables help visualize the problem?
- Are there special cases that need separate consideration?
## Systematic Thinking
Plan your solution path:
- Propose multiple possible approaches
- Analyze the feasibility and merits of each method
- Choose the most appropriate method and explain why
- Break complex problems into smaller, manageable steps
## Rigorous Proof
During the solution process:
- Provide solid justification for each step
- Include detailed proofs for key conclusions
- Pay attention to logical connections
- Be vigilant about potential oversights
## Repeated Verification
After completing your solution:
- Verify your results satisfy all conditions
- Check for overlooked special cases
- Consider if the solution can be optimized or simplified
- Review your reasoning process
Remember:
1. Take time to think thoroughly rather than rushing to an answer
2. Rigorously prove each key conclusion
3. Keep an open mind and try different approaches
4. Summarize valuable problem-solving methods
5. Maintain healthy skepticism and verify multiple times
Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
When you're ready, present your complete solution with:
- Clear problem understanding
- Detailed solution process
- Key insights
- Thorough verification
Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
""" # noqa: E501
total_prompt = f'<s><|im_start|>system\n{meta_instruction}<|im_end|>\n'
for message in messages:
cur_content = message['content']
if message['role'] == 'user':
cur_prompt = user_prompt.format(user=cur_content)
elif message['role'] == 'robot':
cur_prompt = robot_prompt.format(robot=cur_content)
else:
raise RuntimeError
total_prompt += cur_prompt
total_prompt = total_prompt + cur_query_prompt.format(user=prompt)
return total_prompt
def main():
# torch.cuda.empty_cache()
print('load model begin.')
model, tokenizer = load_model()
print('load model end.')
user_avator = 'assets/user.png'
robot_avator = 'assets/robot.png'
st.title('InternLM3-8B-Instruct')
generation_config = prepare_generation_config()
def render_message(msg, msg_idx, deepthink):
if msg['content'] is None:
real_prompt = combine_history(
st.session_state.messages[msg_idx - 1]['content'], deepthink=deepthink, stop=msg_idx - 1
)
placeholder = st.empty()
for cur_response in generate_interactive(
model=model,
tokenizer=tokenizer,
prompt=real_prompt,
additional_eos_token_id=92542,
**asdict(generation_config),
):
placeholder.markdown(postprocess(cur_response, deepthink=deepthink) + '▌')
placeholder.markdown(postprocess(cur_response, deepthink=deepthink))
msg['content'] = cur_response
torch.cuda.empty_cache()
else:
st.markdown(postprocess(msg['content'], deepthink=deepthink))
# Initialize chat history
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'deepthink_messages' not in st.session_state:
st.session_state.deepthink_messages = []
# Display chat messages from history on app rerun
for idx, (message, deepthink_message) in enumerate(
zip(st.session_state.messages, st.session_state.deepthink_messages)
):
with st.chat_message(message['role'], avatar=message.get('avatar')):
if message['role'] == 'user':
st.markdown(postprocess(message['content'], add_prefix=False))
else:
if st.toggle('compare', key=f'compare_{idx}'):
cols = st.columns(2)
if st.session_state['inference_mode'] == 'Deep Thinking':
with cols[1]:
render_message(deepthink_message, idx, True)
with cols[0]:
render_message(message, idx, False)
else:
with cols[0]:
render_message(message, idx, False)
with cols[1]:
render_message(deepthink_message, idx, True)
else:
if st.session_state['inference_mode'] == 'Deep Thinking':
if deepthink_message['content'] is not None:
st.markdown(postprocess(deepthink_message['content'], deepthink=True))
else:
st.markdown(postprocess(message['content']))
else:
if message['content'] is not None:
st.markdown(postprocess(message['content']))
else:
st.markdown(postprocess(deepthink_message['content'], deepthink=True))
# Accept user input
if prompt := st.chat_input('What is up?'):
# Display user message in chat message container
with st.chat_message('user', avatar=user_avator):
st.markdown(postprocess(prompt, add_prefix=False))
real_prompt = combine_history(prompt, deepthink=st.session_state['inference_mode'] == 'Deep Thinking')
# Add user message to chat history
st.session_state.messages.append({'role': 'user', 'content': prompt, 'avatar': user_avator})
st.session_state.deepthink_messages.append({'role': 'user', 'content': prompt, 'avatar': user_avator})
with st.chat_message('robot', avatar=robot_avator):
st.toggle('compare', key=f'compare_{len(st.session_state.messages)}')
message_placeholder = st.empty()
for cur_response in generate_interactive(
model=model,
tokenizer=tokenizer,
prompt=real_prompt,
additional_eos_token_id=92542,
**asdict(generation_config),
):
# Display robot response in chat message container
message_placeholder.markdown(
postprocess(cur_response, deepthink=st.session_state['inference_mode'] == 'Deep Thinking') + '▌'
)
message_placeholder.markdown(
postprocess(cur_response, deepthink=st.session_state['inference_mode'] == 'Deep Thinking')
)
# Add robot response to chat history
response, deepthink_response = (
(None, cur_response) if st.session_state['inference_mode'] == 'Deep Thinking' else (cur_response, None)
)
st.session_state.messages.append(
{
'role': 'robot',
'content': response, # pylint: disable=undefined-loop-variable
'avatar': robot_avator,
}
)
st.session_state.deepthink_messages.append(
{
'role': 'robot',
'content': deepthink_response,
'avatar': robot_avator,
}
)
torch.cuda.empty_cache()
main()
|