File size: 17,156 Bytes
a12f61e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64ce90
a12f61e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64ce90
 
 
a12f61e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
"""This script refers to the dialogue example of streamlit, the interactive
generation code of chatglm2 and transformers.

We mainly modified part of the code logic to adapt to the
generation of our model.
Please refer to these links below for more information:
    1. streamlit chat example:
        https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps
    2. chatglm2:
        https://github.com/THUDM/ChatGLM2-6B
    3. transformers:
        https://github.com/huggingface/transformers
Please run with the command `streamlit run path/to/web_demo.py
    --server.address=0.0.0.0 --server.port 7860`.
Using `python path/to/web_demo.py` may cause unknown problems.
"""

# isort: skip_file
import copy
import re
import warnings
from dataclasses import asdict, dataclass
from typing import Callable, List, Optional

import streamlit as st
import torch
from torch import nn

from transformers.generation.utils import LogitsProcessorList
from transformers.utils import logging

from transformers import AutoTokenizer, AutoModelForCausalLM  # isort: skip

logger = logging.get_logger(__name__)
st.set_page_config(layout='wide')


@dataclass
class GenerationConfig:
    # this config is used for chat to provide more diversity
    max_length: int = 32768
    top_p: float = 0.8
    temperature: float = 0.8
    do_sample: bool = True
    repetition_penalty: float = 1.005


@torch.inference_mode()
def generate_interactive(
    model,
    tokenizer,
    prompt,
    generation_config: Optional[GenerationConfig] = None,
    logits_processor: Optional[LogitsProcessorList] = None,
    prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
    additional_eos_token_id: Optional[int] = None,
    **kwargs,
):
    inputs = tokenizer([prompt], padding=True, return_tensors='pt')
    input_length = len(inputs['input_ids'][0])
    for k, v in inputs.items():
        inputs[k] = v.to(model.device)
    input_ids = inputs['input_ids']
    _, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
    if generation_config is None:
        generation_config = model.generation_config
    generation_config = copy.deepcopy(generation_config)
    generation_config._eos_token_tensor = generation_config.eos_token_id
    model_kwargs = generation_config.update(**kwargs)
    if generation_config.temperature == 0.0:
        generation_config.do_sample = False
    eos_token_id = generation_config.eos_token_id
    if isinstance(eos_token_id, int):
        eos_token_id = [eos_token_id]
    if additional_eos_token_id is not None:
        eos_token_id.append(additional_eos_token_id)
    has_default_max_length = kwargs.get('max_length') is None and generation_config.max_length is not None
    if has_default_max_length and generation_config.max_new_tokens is None:
        warnings.warn(
            f"Using 'max_length''s default \
                ({repr(generation_config.max_length)}) \
                to control the generation length. "
            'This behaviour is deprecated and will be removed from the \
                config in v5 of Transformers -- we'
            ' recommend using `max_new_tokens` to control the maximum \
                length of the generation.',
            UserWarning,
        )
    elif generation_config.max_new_tokens is not None:
        generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
        if not has_default_max_length:
            logger.warn(  # pylint: disable=W4902
                f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) "
                f"and 'max_length'(={generation_config.max_length}) seem to "
                "have been set. 'max_new_tokens' will take precedence. "
                'Please refer to the documentation for more information. '
                '(https://huggingface.co./docs/transformers/main/'
                'en/main_classes/text_generation)',
                UserWarning,
            )

    if input_ids_seq_length >= generation_config.max_length:
        input_ids_string = 'input_ids'
        logger.warning(
            f'Input length of {input_ids_string} is {input_ids_seq_length}, '
            f"but 'max_length' is set to {generation_config.max_length}. "
            'This can lead to unexpected behavior. You should consider'
            " increasing 'max_new_tokens'."
        )

    # 2. Set generation parameters if not already defined
    logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
    logits_processor = model._get_logits_processor(
        generation_config=generation_config,
        input_ids_seq_length=input_ids_seq_length,
        encoder_input_ids=input_ids,
        prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
        logits_processor=logits_processor,
    )
    unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
    while True:
        model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
        # forward pass to get next token
        outputs = model(
            **model_inputs,
            return_dict=True,
            output_attentions=False,
            output_hidden_states=False,
        )

        next_token_logits = outputs.logits[:, -1, :]

        # pre-process distribution
        next_token_scores = logits_processor(input_ids, next_token_logits)

        # sample
        probs = nn.functional.softmax(next_token_scores, dim=-1)
        if generation_config.do_sample:
            next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
        else:
            next_tokens = torch.argmax(probs, dim=-1)

        # update generated ids, model inputs, and length for next step
        input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
        unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())

        output_token_ids = input_ids[0].cpu().tolist()
        output_token_ids = output_token_ids[input_length:]
        for each_eos_token_id in eos_token_id:
            if output_token_ids[-1] == each_eos_token_id:
                output_token_ids = output_token_ids[:-1]
        response = tokenizer.decode(output_token_ids)

        yield response
        # stop when each sentence is finished
        # or if we exceed the maximum length
        if unfinished_sequences.max() == 0:
            break


def on_btn_click():
    del st.session_state.messages
    del st.session_state.deepthink_messages


def postprocess(text, add_prefix=True, deepthink=False):
    text = re.sub(r'\\\(|\\\)', r'$', text)
    text = re.sub(r'\\\[|\\\]', r'$$', text)
    if add_prefix:
        text = (':red[[Deep Thinking]]\n\n' if deepthink else ':blue[[Normal Response]]\n\n') + text
    return text


@st.cache_resource
def load_model():
    model_path = 'internlm/internlm3-8b-instruct'
    model = AutoModelForCausalLM.from_pretrained(
        model_path, trust_remote_code=True, device_map='auto', torch_dtype=torch.bfloat16
    )
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    return model, tokenizer


def prepare_generation_config():
    with st.sidebar:
        max_length = st.slider('Max Length', min_value=8, max_value=32768, value=32768)
        top_p = st.slider('Top P', 0.0, 1.0, 0.8, step=0.01)
        temperature = st.slider('Temperature', 0.0, 1.0, 0.7, step=0.01)
        radio = st.radio('Inference Mode', ['Normal Response', 'Deep Thinking'], key='mode')
        st.button('Clear Chat History', on_click=on_btn_click)

    st.session_state['inference_mode'] = radio
    generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)

    return generation_config


user_prompt = '<|im_start|>user\n{user}<|im_end|>\n'
robot_prompt = '<|im_start|>assistant\n{robot}<|im_end|>\n'
cur_query_prompt = '<|im_start|>user\n{user}<|im_end|>\n\
    <|im_start|>assistant\n'


def combine_history(prompt, deepthink=False, start=0, stop=None):
    if stop is None:
        stop = len(st.session_state.messages)
    elif stop < 0:
        stop = len(st.session_state.messages) + stop
    messages = []
    for idx in range(start, stop):
        message, deepthink_message = st.session_state.messages[idx], st.session_state.deepthink_messages[idx]
        if deepthink:
            if deepthink_message['content'] is not None:
                messages.append(deepthink_message)
            else:
                messages.append(message)
        else:
            if message['content'] is not None:
                messages.append(message)
            else:
                messages.append(deepthink_message)
    meta_instruction = (
        'You are InternLM (书生·浦语), a helpful, honest, '
        'and harmless AI assistant developed by Shanghai '
        'AI Laboratory (上海人工智能实验室).'
    )
    if deepthink:
        meta_instruction += """You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
## Deep Understanding
Take time to fully comprehend the problem before attempting a solution. Consider:
- What is the real question being asked?
- What are the given conditions and what do they tell us?
- Are there any special restrictions or assumptions?
- Which information is crucial and which is supplementary?
## Multi-angle Analysis
Before solving, conduct thorough analysis:
- What mathematical concepts and properties are involved?
- Can you recall similar classic problems or solution methods?
- Would diagrams or tables help visualize the problem?
- Are there special cases that need separate consideration?
## Systematic Thinking
Plan your solution path:
- Propose multiple possible approaches
- Analyze the feasibility and merits of each method
- Choose the most appropriate method and explain why
- Break complex problems into smaller, manageable steps
## Rigorous Proof
During the solution process:
- Provide solid justification for each step
- Include detailed proofs for key conclusions
- Pay attention to logical connections
- Be vigilant about potential oversights
## Repeated Verification
After completing your solution:
- Verify your results satisfy all conditions
- Check for overlooked special cases
- Consider if the solution can be optimized or simplified
- Review your reasoning process
Remember:
1. Take time to think thoroughly rather than rushing to an answer
2. Rigorously prove each key conclusion
3. Keep an open mind and try different approaches
4. Summarize valuable problem-solving methods
5. Maintain healthy skepticism and verify multiple times
Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
When you're ready, present your complete solution with:
- Clear problem understanding
- Detailed solution process
- Key insights
- Thorough verification
Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
"""  # noqa: E501
    total_prompt = f'<s><|im_start|>system\n{meta_instruction}<|im_end|>\n'
    for message in messages:
        cur_content = message['content']
        if message['role'] == 'user':
            cur_prompt = user_prompt.format(user=cur_content)
        elif message['role'] == 'robot':
            cur_prompt = robot_prompt.format(robot=cur_content)
        else:
            raise RuntimeError
        total_prompt += cur_prompt
    total_prompt = total_prompt + cur_query_prompt.format(user=prompt)
    return total_prompt


def main():
    # torch.cuda.empty_cache()
    print('load model begin.')
    model, tokenizer = load_model()
    print('load model end.')

    user_avator = 'assets/user.png'
    robot_avator = 'assets/robot.png'

    st.title('InternLM3-8B-Instruct')

    generation_config = prepare_generation_config()

    def render_message(msg, msg_idx, deepthink):
        if msg['content'] is None:
            real_prompt = combine_history(
                st.session_state.messages[msg_idx - 1]['content'], deepthink=deepthink, stop=msg_idx - 1
            )
            placeholder = st.empty()
            for cur_response in generate_interactive(
                model=model,
                tokenizer=tokenizer,
                prompt=real_prompt,
                additional_eos_token_id=92542,
                **asdict(generation_config),
            ):
                placeholder.markdown(postprocess(cur_response, deepthink=deepthink) + '▌')
            placeholder.markdown(postprocess(cur_response, deepthink=deepthink))
            msg['content'] = cur_response
            torch.cuda.empty_cache()
        else:
            st.markdown(postprocess(msg['content'], deepthink=deepthink))

    # Initialize chat history
    if 'messages' not in st.session_state:
        st.session_state.messages = []
    if 'deepthink_messages' not in st.session_state:
        st.session_state.deepthink_messages = []

    # Display chat messages from history on app rerun
    for idx, (message, deepthink_message) in enumerate(
        zip(st.session_state.messages, st.session_state.deepthink_messages)
    ):
        with st.chat_message(message['role'], avatar=message.get('avatar')):
            if message['role'] == 'user':
                st.markdown(postprocess(message['content'], add_prefix=False))
            else:
                if st.toggle('compare', key=f'compare_{idx}'):
                    cols = st.columns(2)
                    if st.session_state['inference_mode'] == 'Deep Thinking':
                        with cols[1]:
                            render_message(deepthink_message, idx, True)
                        with cols[0]:
                            render_message(message, idx, False)
                    else:
                        with cols[0]:
                            render_message(message, idx, False)
                        with cols[1]:
                            render_message(deepthink_message, idx, True)
                else:
                    if st.session_state['inference_mode'] == 'Deep Thinking':
                        if deepthink_message['content'] is not None:
                            st.markdown(postprocess(deepthink_message['content'], deepthink=True))
                        else:
                            st.markdown(postprocess(message['content']))
                    else:
                        if message['content'] is not None:
                            st.markdown(postprocess(message['content']))
                        else:
                            st.markdown(postprocess(deepthink_message['content'], deepthink=True))

    # Accept user input
    if prompt := st.chat_input('What is up?'):
        # Display user message in chat message container
        with st.chat_message('user', avatar=user_avator):
            st.markdown(postprocess(prompt, add_prefix=False))
        real_prompt = combine_history(prompt, deepthink=st.session_state['inference_mode'] == 'Deep Thinking')
        # Add user message to chat history
        st.session_state.messages.append({'role': 'user', 'content': prompt, 'avatar': user_avator})
        st.session_state.deepthink_messages.append({'role': 'user', 'content': prompt, 'avatar': user_avator})

        with st.chat_message('robot', avatar=robot_avator):
            st.toggle('compare', key=f'compare_{len(st.session_state.messages)}')
            message_placeholder = st.empty()
            for cur_response in generate_interactive(
                model=model,
                tokenizer=tokenizer,
                prompt=real_prompt,
                additional_eos_token_id=92542,
                **asdict(generation_config),
            ):
                # Display robot response in chat message container
                message_placeholder.markdown(
                    postprocess(cur_response, deepthink=st.session_state['inference_mode'] == 'Deep Thinking') + '▌'
                )
            message_placeholder.markdown(
                postprocess(cur_response, deepthink=st.session_state['inference_mode'] == 'Deep Thinking')
            )
        # Add robot response to chat history
        response, deepthink_response = (
            (None, cur_response) if st.session_state['inference_mode'] == 'Deep Thinking' else (cur_response, None)
        )
        st.session_state.messages.append(
            {
                'role': 'robot',
                'content': response,  # pylint: disable=undefined-loop-variable
                'avatar': robot_avator,
            }
        )
        st.session_state.deepthink_messages.append(
            {
                'role': 'robot',
                'content': deepthink_response,
                'avatar': robot_avator,
            }
        )
        torch.cuda.empty_cache()


main()